사이트맵 ×

토탈산업
플라스틱재팬
현대보테코

기술과 솔루션

엠쓰리파트너스
hnp인터프라
휴먼텍
한국마쓰이
기사제목
- 빛을 이용한 흑린의 물성(物性) 제어 연구에 기여… ACS Nano 논문 게재차세대 전자소자의 새로운 소재 물질로 주목받고 있는 흑린(검은색 인)이 외부 빛에 반응해 주름(나노 주름)처럼 구겨지는 전 과정을 최초로 포착한 연구가 나왔다. 흑린은 꿈의 신소재라 불리는 그래핀을 잇는 2차원 소재로 주목받고 있다. 이번 연구는 흑린의 ‘나노 주름’에 의해 파생되는 전기적·광학적 특성을 제어하는 데 도움이 될 것으로 기대된다.UNIST (총장 이용훈) 화학과의 권오훈 교수팀은 흑린(Black phosphorus, P)에 섬광을 비추는 방법으로 흑린 내부의 미세구조가 변형되는 전 과정을 포착하는 데 성공했다. 흑린은 전자소자나 나노 스케일 미세기계(NEMS) 재료로 주목받는 물질이다. 전기적 특성을 쉽게 바꿀 수 있어야 이러한 소자 재료로 쓸 수 있는데, 흑린은 외부자극으로 미세구조가 변형되면 전기적 특성이 바뀌는 특이한 성질이 있기 때문이다.* 흑린(인): 삐뚤빼뚤한 육각 벌집 구조(puckered honeycomb structure)를 가진 대표적인 비등방성(anisotropic) 2차원 반도체 물질. 성냥 머리에 쓰이는 적린(붉은 인)이나 폭약에 쓰이는 백린보다 상온에서 안정하다. 단순 육각 벌집 구조인 그래핀(탄소)보다 전기전도성이 높을 뿐만 아니라 그래핀과 달리 에너지 밴드갭(전기적 특성)을 조절할 수 있다는 장점이 있다.* 섬광: 짧은 순간 반짝이는 빛(레이저)권오훈 교수는 “이번 연구는 흑린의 독특한 원자 배치구조(비등방성) 때문에 발생하는 다양하고 특이한 성질(전기·열 전도성, 광학적 성질 등)을 빛을 이용해 아주 짧은 시간 단위로 조절할 수 있다는 것을 보였다는 점에서 실증적으로도 가치 있는 연구”라고 평했다.* 비등방성(anisotropy): 물체의 물리적 성질이 방향에 따라 다른 성질. 흑린은 특정 방향으로 원자 배치가 더 빼곡하다.흑린의 빛에 의한 열팽창 구조 변화. 초고속 투과전자현미경을 이용해 2차원 흑린의 나노 주름을 시공간 동시 이미징을 통해 4차원 재구성하였다. 특히, 흑린의 비등방적 원자 배열에 기인하여 나노 초 레이저 조사 후 열팽창 시 흑린의 지그재그(zigzag) 방향(원자 배열이 빼곡한 방향)으로는 나노 주름이(bulging), 이에 수직인 암체어(armchair) 방향(원자 배열이 느슨한 방향)으로는 넓게 부풀어 오르는 형태(swelling)로 반응한다는 것을 밝혀냈다.흑린이 외부자극에 반응해 순간적으로 구조가 변하는 모습을 직접 관찰한 연구는 아직 없었다. 빛의 강한 에너지로 나노미터 수준의 구조 변형을 일으키기 때문에 변형이 일어나는 순간을 포착하기 힘든데 다, 원자 수준으로 얇은 흑린의 미세한 구조 변화를 보기 위해서는 특별한 관찰법이 필요했기 때문이다.연구진은 빛을 외부자극으로 써 흑린의 미세구조가 실시간으로 바뀌는 모습을 관찰했다. 짧은 순간의 반응을 포착하는 데는 ‘초고속 전자현미경’을 이용했다. 초고속 전자현미경은 ‘초고속 촬영 카메라’처럼 아주 짧은 시간(최대 10~13초, 100펨토초) 간격으로 원자 수준의 움직임을 끊어 찍을 수 있다. 초고속 전자현미경으로 얻은 2차원 이미지를 입체적(3차원)으로 재구성한 뒤 시간 단위로 이어 붙여 흑린이 외부자극에 반응해 내부 미세구조가 바뀌는 전체 과정을 얻었다.* 초고속전자현미경: 투과전자현미경에서 ‘빛’ 역할을 하는 전자빔의 시간분해능(촬영 간격)을 피코초 단위로 높인 전자현미경이다.4차원(3차원 공간+시간) 이미지로 재구성된 흑린 나노 주름 형성. A, 흑린의 지그재그 및 암체어의 각 원자 배열 축을 따라 2차원 시간 분해 암시야 이미지로부터 재구성된 4차원 이미지. B, 각 축을 따라 재구성된 이미지의 합으로부터 도출된 흑린 나노 주름의 전체 형상.이를 통해 흑린을 구성하는 인(P) 원자가 더 빼곡하고 탄탄하게 쌓여있는 방향으로 구조 변형이 잘 생긴다는 사실을 발견했다. 원자가 빼곡하게 쌓여있는 방향으로 나노 주름이 더 잘 만들어진 것이다. 피부는 탄력이 있을수록 주름이 잘 생기지 않는데 흑린에서는 상반되는 현상 나타났다.시간 분해 암시야(dark-field) 이미징. A, 흑린의 지그재그 또는 암체어 방향의 원자 배열로 만들어진 전자 회절 패턴(electron diffraction pattern)으로부터 시간 분해 2차원 암시야 이미지를 얻어내었다. B, 원자 간력 현미경 이미지 (atomic force microscope image)를 통해 시료 기판의 구멍 부분에 매달린 형태의 2차원 흑린 구조를 토대로 4차원 구조 재구성을 구현할 수 있었다. C, 시간 분해 암시야 이미징을 통해 나노 초 시간 영역에서 일어나는 흑린의 비등방적 나노 주름을 지그재그 및 암체어 방향에서 각각 직접 관측하였다.특히 이번 연구는 초고속 전자현미경을 이용한 ‘암시야 이미징’(Dark field Imaging) 기법을 적용했다. 암시야 이미징은 전자빔이 물질 내부를 구석구석 통과하면서 얻은 정보를 모아 이미지를 구성하는 방법인데, 짧은 순간을 포착하는 데 쓰기에는 어려운 기법이다. 전자빔의 세기가 너무 약해 카메라의 ‘필름’ 역할을 센서가 빔을 잡아내지 못하기 때문이다.연구를 주도한 김예진 UNIST 화학과 박사과정 연구원은 “2차원 물질의 구조 동역학 관찰에 암시야 이미징 기법을 최초로 적용한 연구”라며, “국내 유일 전자 ‘직접검출 카메라’를 활용해 암시야 이미징 기법을 쓸 수 있었다”고 설명했다.이번 연구 결과는 나노 분야 국제학술지인 ACS Nano에 9월 23일 자로 출판됐다. 연구 수행은 한국연구재단과 기초과학연구원(IBS), 삼성종합기술원의 지원을 받아 이뤄졌다.* 논문명: Light-Induced Anisotropic Morphological Dynamics of Black Phosphorus Membranes Visualized by Dark-Field Ultrafast Electron Microscope자료문의: 화학과_ 권오훈 교수(052)217-5424
편집부 2020-10-19
기사제목
- 수소생산 에너지 소모 낮추고 생산량은 늘려… Nature Comm. 논문 게재물과 햇빛만으로 청정연료인 수소를 생산하는 시대가 가까워졌다. 더 이상 화석연료를 쓰지 않고서도 청정 수소를 생산할 수 있는 광(光)촉매가 개발되고 있기 때문이다.* 광촉매: 빛을 받아 높은 에너지를 가진 광전자와 전공을 발생시켜 물을 분해하여 수소와 산소를 만들거나 유해 물질을 분해하여 환경오염을 방지하게 하는 반도체 물질.UNIST (총장 이용훈) 에너지화학공학과의 이재성 교수팀은 태양광과 물로 수소를 만들 수 있는 광촉매의 성능을 개선한 연구 결과를 발표했다. ‘태양광 수소생산 시스템’의 전극을 구성하는 광촉매는 태양광 에너지를 흡수해 물(H2O)에서 수소(H2)를 만든다. 이번에 개발된 촉매는 수소생산에 필요한 에너지 소모는 낮추고 동시에 생산량은 늘리는 이중기능성이 있어 수소생산 효율이 높다. 태양광 수소생산 시스템의 상용화 연구에서 중요한 이정표를 세웠다고 평가되는 이유다.* 수소생산효율(태양광전환효율): 정해진 면적에 도달하는 태양에너지 중 수소생산에 쓰인 비율. 생산된 수소의 양을 입사(쪼여진)하는 태양에너지의 양으로 나누어서 계산함. 소모되는 에너지가 적고 수소 생산량이 많으면 태양광전환 효율이 올라간다.청정연료라고 여겨지는 수소는 대부분 천연가스와 같은 화석연료를 개질(改質)시켜 얻는다. 그러나 화석연료로 수소를 생산하는 과정에서 지구온난화를 일으키는 이산화탄소가 발생하는 역설이 있어 일명 ‘그레이 수소’라 불린다. 물과 같은 무궁무진한 원료와 재생에너지를 이용해 ‘그린 수소’를 생산하는 방법이 있지만, 아직 가격경쟁력이 부족하다. 이 때문에 생산에 소모되는 에너지를 낮추고 수소 생산량은 늘릴 수 있는 값싼 촉매가 필요하다.개발된 촉매의 구조 및 수소 생성 반응 모식도. 코어-쉘 나노막대 구조의 산화철 광촉매 전극이 햇빛을 흡수하여 광전자(photoelectron, 음전하)와 전공(hole, 양전하)을 생성하고 이들이 물을 분해하여 수소(H2)와 산소(O2)를 만드는 과정을 보여주는 모식도이재성 교수팀은 산화철을 ‘코어-쉘’(core-shell) 이중구조로 만드는 방법으로 에너지 소모는 줄이면서 동시에 수소 생산량을 늘리는 가격경쟁력을 확보했다. 에너지 소모를 나타내는 반응 개시전압은 일반 산화철 전극에 비해 270mV(밀리 볼트)만큼 떨어지고, 수소 생산량을 나태는 지표인 전류밀도는 기존 산화철 촉매보다 66.8% 증가했다. 앞서 개발된 대부분 촉매가 둘 중 하나에서만 성과를 보여온 한계를 극복한 것이다.촉매 물질로 사용된 산화철(Fe2O3)은 녹슨 철에서 볼 수 있는 붉은 물질이다. 가격도 저렴하고 구하기도 쉽다. 또 흡수할 수 있는 태양광의 파장 대역도 넓다. 하지만 내부의 전하(전자) 전달 문제 때문에 실제 이 촉매를 썼을 때 수소생산 효율이 높지 않았다.연구팀은 산화철을 이중구조로 만들어 물질 내부 전하 전달 문제를 개선한 고효율 촉매를 개발했다. 탄탈럼(Ta)이 도핑(첨가)된 산화철 중심부(Core)를 도핑되지 않은 산화철 껍질(Shell)이 감싸고 있는 구조다. 마치 연필과 같은 구조의 나노 막대이다. 이 막대 입자들을 도자기 만들듯 구워(소결) 광촉매로 이뤄진 전극을 만들었다. 소결 반응에서 흑연과 같은 마이크로웨이브 흡수체를 써 단시간 동안 높은 온도에서 소결이 가능하다.* 도핑(Doping): 반도체 물질의 전하 전달 속도를 높이기 위하여 소량의 다른 원소를 반도체 격자(물질의 원자구조) 내에 도입하는 것이재성 교수는 “추가적인 연구를 통해 상용화의 분기점인 수소생산 효율 10%를 달성하는 것이 목표”라며, “이번에 개발된 촉매로 이러한 목표에 한 발짝 더 다가서게 됐다”고 연구 의미를 전했다.  한편, 이재성 교수는 태양광 수소생산을 20여 년간 연구해온 이 분야 석학이다. 이 교수 연구팀은 과학기술정보통신부의 기후변화대응 사업의 지원을 받아 앞으로 5년 내에 이 기술을 ‘태양광 수소차 충전소’에 적용하기 위한 실증 연구를 수행 중이다.UNIST 에너지화학공학과 허민 짱(Hemin Zhang) 연구교수, UNIST 연구지원본부 정후영, 신태주 교수, 중국 대련 물리화학 연구소(DICP)의 씨우리 왕(X. Wang), 홍씨엔 한(H. Han), 찬 리(C. Li) 교수가 참여한 이번 연구는 국제학술지인 Nature Communications에 9월 15일 자로 공개됐다. 연구 수행은 과학기술정보통신부(장관 최기영)가 추진하는 기후변화대응 사업과 중견연구자지원 사업을 통하여 이루어졌다.* 논문명: Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turnon voltage for solar water splitting자료문의: 에너지화학공학과: 이재성 교수_(052)217-2544
편집부 2020-10-19
기사제목
- 철 박막으로 촉매 표면 재생 촉진… Science Advances 게재온실가스인 메탄(CH4)과 이산화탄소(CO2)를 고부가가치 수소(H2)로 바꿔주는 새로운 나노 촉매가 개발됐다. 이 촉매는 기존의 전극 촉매보다 메탄-수소 변환 효율이 2배 이상 뛰어나 다양한 에너지 변환 기술 발전에 크게 기여할 것으로 기대된다.UNIST(총장 이용훈) 에너지화학공학과 김건태 교수팀은 온실가스인 메탄과 이산화탄소로 수소와 일산화탄소(CO)를 만드는 반응(메탄 건식 개질 반응)에 쓰이는 촉매의 성능과 안정성을 강화할 방법을 개발했다.* 일산화탄소(CO): 산업에서 사용되는 화합물 및 연료 생산을 위한 원료로 사용된다.메탄 건식 개질 반응에는 니켈(Ni) 금속 복합체 촉매가 주로 쓰였다. 하지만 이 촉매는 오래 쓸 경우 성능이 떨어지고 수명도 짧다. 고온에서 촉매끼리 뭉치거나 반응이 반복되면 촉매 표면에 탄소가 쌓이기 때문이다.극대화된 이온 위치 교환 현상(Topotactic Ion Exchange) 모식도(A)는 기존 스마트 촉매의 자가 재생(exsolution) 과정이고, (B)는 이온 위치 교환 현상을 이용한 스마트 촉매 자가 재생 과정인데, (B)의 경우 외부에 균일하고 미세하게 원자층 증착된 철 막(layer)이 자리 교체 용출 현상을 더욱 촉진한다. 결과적으로 촉매 역할을 하는 니켈이 전극(연료극) 표면으로 올라온 수가 급증했다.연구팀은 니켈(Ni, 촉매 역할을 하는 핵심물질)이 표면으로 더 잘 올라오게 하는 방법을 고안해 문제를 해결했다. 철(Fe)을 복합체 촉매 표면에 얇게 입힌 것이다. 니켈은 복합체 밖으로 나가려는 성질이 강하고 철은 안으로 들어가려는 성질이 강해 두 물질이 자리를 바꾸게 되는 원리다. 새롭게 올라온 니켈 때문에 입자 간 뭉침이나 표면에 탄소가 쌓이는 현상이 억제된다. 또 밖으로 나온 니켈이 철과 결합해 반응성이 더 좋아진다.이온 위치 교환 현상(Topotactic Ion Exchange) 투과전자현미경(TEM) 분석결과(A, B) TEM 분석결과 니켈(Ni)이 표면으로 올라오고, 철(Fe)이 내부로 들어간 걸 확인했다. EDS 분석결과, 표면에 올라온 입자는 니켈-철(Ni-Fe) 합금임을 확인했다. (C-E) 이 현상들을 더 자세히 분석하기 위해 HR-TEM 분석결과 철이 페로브스카이트 구조 격자에 위치함을 확인했다.이론(DFT; Density Fuctional Theory)을 통한 용출 에너지 및 상대적인 자리 교환 에너지 계산(A) 외부에 있는 철과 내부에 있는 니켈이 단계적으로 자리를 바꾸는 과정에 따른 계산 결과다. 두 이온의 위치 교환이 열역학적으로 안정하다는 것을 DFT 계산을 통해 확인했다. (B) 금속 종류에 따른 용출 에너지 계산 결과로, -3.32 eV의 용출 에너지를 갖는 니켈에 비해 철은 –1.45 eV로 더 낮은 용출 에너지를 갖는 것을 확인함. (C) 니켈 금속을 기준으로 금속들의 상대적인 자리 교환 에너지를 계산한 결과이다.촉매의 메탄가스 변환 특성(A,B) 가장 많은 Ni-Fe alloy를 형성한 LSTN-20C-Fe이 가장 많은 메탄 변환량을 보이며, 활성화 에너지 또한 가장 낮은 것으로 확인되었다. (C) 400시간 동안 일정한 H2/CO 비율로 안정적인 메탄 변환 성능을 보였다.제1저자인 주상욱 UNIST 에너지공학과 석‧박사통합과정 연구원은 “균일하고 미세한 철 박막을 입힐 수 있는 기술(원자층 증착법)을 이용해 ‘자리 교체 용출 현상’을 촉진시켰다”고 설명했다.* 복합체: 이번 실험에서는 페로브스카이트 구조를 갖는 복합체 촉매를 사용함. 2종류의 양이온과 1종류의 음이온을 갖는 구조다. 양이온 중 하나가 전이금속(니켈)이다.* 원자층 증착법(Atomic layer deposition): 반응물과 표면의 반응만 일어나고, 반응물 사이에는 반응이 일어나지 않아 과잉의 반응 기체가 공급되어도 단층의 원자층만 형성되는 “자가-억제(Self-limiting)” 특성을 갖고 있다. 기존 증착 기술과 달리 원자층을 한 층씩 미세하게 조절하여 박막을 성장시킬 수 있는 고도화된 기술이다.공동 제1저자인 성아림 UNIST 에너지공학과 석·박사통합과정 연구원은 “철 박막을 20회 반복해서 입혔을 때 촉매 단위 면적 당 약 400개가 넘는 나노 입자(철-니켈 합금)가 생겼고, 이 입자들은 니켈과 철로 이뤄져 촉매 반응성이 높다”고 설명했다.새로운 나노 촉매를 사용한 메탄 변환 성능은 700℃에서 70% 이상의 높은 변환효율을 보였고, 안정성에서도 400시간 이상을 유지한 결과를 보였다. 김교수는 “이는 기존 전극 촉매보다 변환효율이 2배 이상 뛰어난 것”이라며, “개발된 촉매는 다양한 에너지 변환 기술 분야에 쓰일 것”이라고 기대했다.이번 연구는 한정우 포항공대 교수, 美 펜실베니아대 존 보스(John M. Vohs), 교수, 펜실베니아대 레이몬드 고티(Raymond J. Gorte) 교수도 함께 참여했다. 연구결과는 세계적 과학저널 사이언스(Science)의 자매지인 ‘사이언스 어드밴시스(Science Advances)’ 8월 26일(수) 온라인판에 게재됐다.* 논문명: Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition자료문의: 에너지화학공학과_김건태 교수(052)217-2917 
편집부 2020-10-13
기사제목
- 전지 제조 단순화로 가격경쟁력 확보 가능… Advanced Functional Materials 게재물을 이용해 실리콘 태양전지의 제조공정은 단순화하면서도 전지 효율은 끌어올리는 기술이 나왔다. 이 기술로 전지의 무기물 구성층(후면 전계층)을 유기물로 대체한 실리콘 태양전지를 최초로 구현했다. 가격 경쟁이 치열한 실리콘 태양전지 분야에서 우위를 확보하는 데 기여할 것으로 기대된다. 제조된 태양전지의 구조(a) 및 물에 의한 유기 박막 내부 구조 정렬 전(b), 후(c) 비교UNIST(총장 이용훈) 신소재공학과의 최경진 교수팀은 실리콘 태양전지의 ‘후면 분리막’(또는 후면 전계층)의 성능을 개선하고 제조공정은 단순화하는 기술을 개발했다. 분리막은 태양전지의 효율을 좌우하는 중요한 전지 구성층이다. 연구진은 유기물로 이뤄진 분리막에 물을 첨가하는 방식으로 성능은 높이고 고가의 전지 제조공정은 줄였다.교신저자인 최경진 교수는 “유기 박막(강유전체)의 전기적 특성(전기장의 방향)을 조절하는 방식으로 n형·p형 실리콘 태양전지에 모두에 이 박막을 쓸 수 있다”며, “이번 연구로 유기 물질 박막의 고질적 문제인 온도·습도 불안정성도 해결해(1,000시간 구동 가능) 상용화 가능성이 밝다”고 기술에 관해 설명했다.* 강유전체: 자발적 분극을 갖는 물질. 물질 내부의 전기쌍극자가 마치 자석에 반응하는 철 가루처럼 일정한 방향으로 정렬되는 현상을 분극이라 한다. 이로 인해 물질 내부에 전기장이 만들어진다. 강유전체는 전기가 통하지 않는 절연체다* n·p 형 실리콘: 실리콘에 첨가하는 물질의 종류에 따라 n형(질소), p형(붕소)로 구분된다.실리콘 태양전지 후면 분리막은 광(光) 생성 전자와 정공 간 재결합을 방지하는 중요한 역할을 한다. 태양광을 받은 광 활성층(실리콘, 페로브스카이트 등)이 전자와 정공을 내놓는데 이 전자(음전하, -)와 정공(양전하, +)이 결합해 사라지는 것을 막는다. 전지가 생산하는 전력량은 전자와 정공 양이 결정하므로 전지 효율을 높이려면 이들의 재결합을 효과적으로 막는 분리막이 필요하다.* 전자(electron): 음전하를 가지고 있는 기본 입자* 정공(hole): 전자의 빈(空) 상태를 나타내는 가상의 입자이다. 전자와는 반대로 양전하를 갖는 전하 운반체로서 전기장 자기장 등의 외부력에 반응한다.유기 박막의 내부 구조다공성 유기 박막의 전자 현미경 이미지 및 스침각 X선 회절 패턴 a. 일반적인 제작된 유기 P(VDF-TrFE) 박막 b. 물을 이용해 만든 다공성 유기 P(VDF-TrFE) 박막. 내부의 박막 구조가 잘 정렬되어 있고, 개별 내부조직의 크기가 눈에 띄게 커진 것을 확인할 수 있음. c. 일반적으로 제작된 유기 P(VDF-TrFE) 박막 및 d. 다공성 유기 P(VDF-TrFE) 박막의 스침각 X선 회절 패턴. 다공성 유기 박막에서는 (200)에 해당하는 X선 강도(intensity)가 집중되어 있으며, 높은 결정성을 상징하는 (100)이 관찰 가능함.최교수 연구팀은 유기물 강유전체 박막에 미량의 물을 첨가해 분리막의 효율을 높였다. 기름처럼 물을 싫어하는 유기 박막에 물을 첨가하면 수 마이크론(μm, 10-6) 길이의 파이버 형상 유기물 입자가 조밀하고 규칙적인 구조로 정렬된다. 미세구조가 정렬됨에 따라 전자는 끌어당기고 정공은 밀어내는 힘이 더 커져 분리막의 성능이 좋아진다.전자, 정공 숫자(유효 캐리어) 비교무기 박막(SiO2, SiNx) 및 유기 박막(P(VDF-TrFE, 향상된 분극의 P(VDF-TrFE)가 코팅된 a. p 형 및 b. n 형 실리콘의 유효 캐리어(전자와 정공) 수명. 유효 캐리어 수명이 길수록 재결합을 효과적으로 방지할 수 있음을 의미함. c. 기존에 보고된 무기 박막들의 재결합 속도와 본 연구에서 제안한 유기 박막의 재결합 속도 비교. 기존에 보고된 무기 박막과 비교 가능할 만큼 매우 낮은 재결합 속도를 보임. 재결합 속도가 느릴수록 유효 캐리어 숫자가 증가함.태양전지의 구조 및 유한시차분석법을 이용한 박막의 효과 규명a. 유기물(PEDOT:PSS)-실리콘-유기물(P(VDF-TrFE) 하이브리드 태양전지의 모식도. b. P(VDF-TrFE) 유기 박막의 유무에 따른 태양전지의 효율 그래프. 18.37%의 효율을 나타냄. c. 유한차분시간영역법을 통한 유기박막(VDF-TrFE)의 효과 규명또 전지 제조과정 중 분리막에 ‘구멍’을 뚫는 고가의 공정이 필요 없다. 분리막은 전기가 통하지 않는 물질이라 구멍을 뚫어 전자와 정공의 통로를 만들어 줘야 한다. 반면 새롭게 개발된 분리막은 첨가됐던 물을 증발시켜 제거함으로써 그 자리에 구멍을 쉽게 만들 수 있다.제1저자인 UNIST 신소재공학부 강성범 연구원은 “유기 박막 내부 미세구조의 정렬 현상(결정성 증가)을 발견하고, 이를 이용한 실리콘 태양전지 제조 방식을 고안했다”고 설명했다.최교수는 “이번 연구로 무기물에 한정돼 있던 실리콘 태양전지 후면 전계층 기술을 유기물로 확장했다”며, “고가의 진공 장비가 필요한 무기 박막 태양전지와 달리 유기 박막을 쓸 경우 공정이 간편해져 가격경쟁력을 갖춘 태양전지를 만들 수 있을 것”이라고 전망했다.이번 연구는 소재 분야의 세계적 학술지인 ‘Advanced Functional Materials’에 9월 13일 자로 온라인 공개됐다. 연구수행은 한국연구재단의 중견연구자지원사업, 산업통상자원부 한국에너지기술평가원의 에너지기술개발사업의 지원으로 이뤄졌다.* 논문명: Ambipolar passivated back surface field layer for Silicon photovoltaics자료문의: 신소재공학과_최경진 교수(052)217-2337
취재부 2020-10-11
기사제목
- 금탑산업훈장 이원해 대표이사회장(대모엔지니어링)  - 은탑산업훈장 강인각 대표이사(주강로보테크) 등 유공자 49명 포상한국기계산업진흥회(회장 손동연)는 지난 9월 21일(월) 대전상공회의소에서 산업통상자원부 주최로 「2020년도 기계로봇산업 발전유공 포상식」을 개최했다고 밝혔다. 이날 포상식에는 산업통상자원부 성윤모 장관, 한국기계산업진흥회 손동연 회장 등이 참석한 가운데, 기계로봇산업 진흥을 통해 산업 발전에 크게 이바지한 유공자에 대한 포상을 수여했다. 기계로봇산업(자본재분야) 발전유공 포상은 자본재 국산화를 통한 제조업 경쟁력 강화와 기술개발 의욕 고취, 품질 수준 제고로 무역수지를 개선코자 1984년부터 시행해오고 있다. 올해 포상에서 영예의 금탑산업훈장은 세계최초 건설 중장비 어태치먼트 기술을 선도하고, 글로벌화와 Smart Factory 구축 주도로 자본재산업 발전에 중추적 역할을 한 대모엔지니어링(주) 이원해 대표이사가 수상했다.은탑산업훈장은 29년간 공장자동화 관련 구동기기 생산 및 공급, A/S 및 유지보수에 대한 아낌없는 투자로, 공장자동화 관련 구동기기 100% 국산화 개발의 성과를 이룬, (주)주강로보테크 강인각 대표이사가 수상했다. 산업포장은 대형/초대형 굴삭기 등 제조기술 확보를 통한 공급능력 확대 및 외자 부품을 국산화한 두산인프라코어(주) 박찬혁 전무, 블라인드 리벳 관련 기술 및 독자설비 개발을 통한 제품 국산화를 선도한 (주)넥스텍 이영준 대표이사, 로봇 응용 시스템 개발 및 경쟁력 확보에 기여한 (주)세스텍 신기범 대표이사 등 3명이 수상했다.대통령표창은 한라IMS(주) 지석준 대표이사 등 6명과 기업부문 STX엔진(주) 등 2개사가 수상하였으며, 국무총리표창은 한국기계연구원 송창규 책임연구원 등 4명과 기업부문 삼보모터스(주) 등 4개사, 산업통상자원부장관표창은 삼성중공업(주) 이재창 Senior Engineer 등 18명과 10개사가 각각 수상했다. ○ 유공기업 부문        
편집부 2020-10-11
기사제목
- 신축성·접착력 우수해 유연 디스플레이 소자 적용 가능… CHEM. ENG. Journal 게재접착력과 신축성이라는 두 마리 토끼를 잡은 점착제가 나왔다. 투명하고 금속을 부식시키지 않아 TV나 휴대폰 같은 디스플레이 소자에서 각 부품을 고정하는 역할을 할 수 있다. 돌돌 말아서 휴대했다 펼쳐보는 TV 개발이 머지않았다.UNIST(총장 이용훈) 에너지화학공학과 이동욱 교수팀과 전기전자공학과 김학선 교수 연구팀은 ‘고무줄처럼’ 즉각적으로 형태 회복이 가능한 아크릴계 감압성(Pressure Sensitive) 점착제를 개발하였다. 감압성 점착제는 ‘포스트잇’이나 ‘스카치테이프’처럼 살짝 눌러주는 힘만으로도 접착력을 갖는 물질이다. 연구팀은 이 소재의 우수한 접착력(박리 강도)은 유지하면서도 신축성(즉각적 형태 회복 능력)을 강화했다.점착제는 양면테이프처럼 소자 내부 구성품을 연결하는 역할을 한다. 휴대폰이나 TV 같은 디스플레이 소자는 유리창, 금속전극, 발광물질 등이 차곡차곡 쌓여 있는 샌드위치 구조인데, 점착제를 이용해 이 구성품 사이를 고정한다. 웨어러블기기나 휴대가 편한 대형 화면에 관한 관심이 높아지면서 움직임이나 변형에 강한 점착제 개발 요구가 높다.감압성 점착제(PSA)를 사용하여 제조된 디스플레이 모식도김학선 교수는 “화면은 크게 보면서도 갖고 다닐 때는 작게 만들고 싶은 것이 소비자들의 욕구”라며, “결국 화면을 접거나 말거나 구기는 수밖에 없기 때문에, 외부 변형을 견뎌낼 수 있는 점착제 개발이 필수”라고 말했다이번에 개발된 점착제는 표면에서 잘 벗겨지지 않으면서도(박리 강도) 우수한 신축성을 갖는다. 일반적으로 점착체의 박리 강도와 신축성은 반비례하지만, 연구팀은 ‘사전변형’이라는 기법을 이용해 이 문제를 해결했다. 사전변형은 점착체에 미리 변형을 가하는 방법이다. 박리 강도 실험결과 시중의 스카치테이프보다 65% 높은 박리 강도를 보였다. 또 원래 길이의 25%를 늘렸을 때 즉각적으로 변형이 회복되는 신축성도 보였다.* 사전변형 전략(prestrain): 변형(strain)을 미리 가해, 추가적 변형을 가했을 때 원래 변형 상태로 돌아올 수 있게 만드는 전략. 점착제를 원래 길이의 10%에 해당하는 만큼 미리 늘려준 뒤 여기에 추가적 변형을 가하면, 이 추가적인 변형을 제거됐을 때 사전변형 상태로 돌아올 수 있다. 개발된 점착제의 디스플레이 소자 호환성 평가. a 신율 변화에 따른 투과도 평가, b 30% 신율에서의 점착제의 실제적 투명도, c 고온다습 조건에서 점착제와 접촉한 ITO 기판의 표면 저항값, d 표면저항 측정 기기연구팀은 개발된 점착제의 디스플레이 소자 호환성도 점검했다. 소자 내부에는 금속전극이 들어가기 때문에 점착제가 금속을 부식시키면 안 된다. 전극 소재인 ITO에 개발한 점착제를 부착시켜 4주간 고온 다습한 환경에 노출 시켰을 때 기판이 부식되는 현상(표면저항 증가)이 발생하지 않았다. 또 투명성도 갖춰 발광물질에서 나오는 빛을 그대로 전달할 수 있다.본 연구에 제1저자로 참여한 이주학 에너지화학공학과 석사는 “이번 연구는 첨단 디스플레이 분야 및 새로운 감압성 점착제 개발 및 제조에 중요한 역할을 할 것”이라고 기대했다.이동욱 교수는 “ ‘사전변형 전략’을 손쉽게 적용할 수 있는 공정을 개발하고 접착력을 추가로 보완하면 디스플레이 소자에 사용 가능한 점착제를 대량 생산할 수 있을 것”이라고 기대했다.한편, 이주학 에너지 에너지화학공학과 석사는 바나듐 이온 배터리로 전기차 초 급속 충전 시스템과 에너지저장시스템 시장에 진출한 스탠다드에너지㈜에 재직 중이다.이번 연구 성과는 화학공학 분야 국제학술지 Chemical Engineering Journal에 8월 27 온라인 공개됐으며, 출판을 앞두고 있다. 연구수행은 산업통상자원부, 한국연구재단(NRF) 등의 지원으로 이뤄졌다.* 논문명: Stretchable and recoverable acrylate-based pressure sensitive adhesives with high adhesion performance, optical clarity, and metal corrosion resistance자료문의: 에너지화학공학과_이동욱 교수 (052)217-2594
편집부 2020-10-11
기사제목
- 수소생산 경제성 확보할 고효율·고내구성 전이금속계 수전해 촉매 개발  - 저가 인화몰리브덴에 티타늄 미량 도핑… 전자구조 변화로 내구성 대폭 향상수소전기차로 대표되는 수소경제 활성화의 핵심은 전기를 생산하기 위한 수소를 저렴한 가격에 생산하는 것이다. 수소를 생산하는 방법은 부생 수소 포집1), 화석연료 개질2), 수전해 등이 있다. 그중 친환경적 방법인 ‘물의 전기분해’인 수전해 방식에서 수소 발생 반응을 촉진하는 역할을 하는 촉매는 수소경제의 효율과 가격경쟁력을 결정하는 가장 중요한 요소이다. 하지만 수전해 장치에서는 수소 발생 반응 활성과 장기 내구성에서 어떤 물질과도 비교할 수 없을 만큼 좋은 성능을 보이는 고가의 백금(Pt)촉매를 필수적으로 사용해야 해 다른 방법들만큼 가격경쟁력을 확보할 수 없었다.부생 수소 포집: 석유화학 및 제철 산업 등의 공정에서 부가적으로 발생하는 수소를 포집하는 방법천연가스 같은 탄화수소 연료를 개질기에 통과시켜 수소를 얻는 방법티타늄 도핑된 인화 몰리브덴의 수소 발생 반응 메커니즘 모식도 수전해 장치는 물에 녹아 전류를 흐르게 해주는 전해질에 따라 다양한 종류가 있다. 이 가운데 고분자 전해질막(Proton exchange membrane, PEM) 기반 수전해 장치는 고가의 백금계 촉매가 아닌 전이금속 소재의 촉매에서도 수소 발생 반응 활성이 높아 상용화 연구가 집중되고 있다. 하지만 활성을 끌어올리는 데 연구가 집중되는 사이 전기화학적 환경 속에서 쉽게 부식되는 전이금속 소재의 내구성을 높이는 연구는 상대적으로 등한시됐다.한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구단 유성종 박사팀이 백금을 사용하지 않고 수소생산 효율을 향상시키고, 비 백금촉매의 한계였던 내구성 문제를 극복하여 장기적 안정성을 확보한 전이금속3) 소재의 촉매를 개발했다고 밝혔다. 전이금속: 원자의 전자배치에서 최 외부의 d 오비탈이 불포화이거나, 불포화인 이온을 만드는 원소로 주기율표의 3족에서 12족 원소가 모두 포함된다.(a) 티타늄 도핑된 인화 몰리브덴의 구조 및 수소 발생점의 모식도(b, c) 수소 발생 반응에 대한 활성과 15일간의 촉매 안정성 평가결과KIST 유성종 박사팀은 저가의 전이금속인 인화 몰리브덴(MoP)에 스프레이 열분해(spray pyrolysis)4) 공정을 통해 소량의 티타늄을 주입하였다. 몰리브덴은 값이 싸고 비교적 다루기 쉬워 에너지 전환 및 저장장치의 촉매 재료로 사용되고 있지만, 산화에 취약하여 쉽게 부식되는 게 단점이었다.4) 스프레이 열분해(spray pyrolysis): 가습기 또는 노즐을 이용하여 전구체를 액적으로 만들고, 이를 고온의 전기로를 통과시켜 분말을 얻는 공정(a) 티타늄 도핑된 인화 몰리브덴 촉매 합성 방법(b) 합성된 촉매의 구조와 티타늄 도핑 사이트 분석결과 KIST 연구팀이 개발한 촉매는 합성 과정에서 각 재료의 전자구조가 완전히 재구성되며 수소 발생 반응의 활성도가 백금계 촉매와 동등한 수준을 보이는 것으로 확인됐다. 특히, 전자구조의 재구성에 따라 전이금속계 소재의 고질적인 한계로 지적되던 높은 부식성을 개선하여 기존 촉매 대비 내구성이 26배 향상되어 비백금계 촉매의 상용화 시기를 크게 앞당길 것으로 보인다.KIST 유성종 박사는 “이번 연구는 전이금속계 촉매 기반 수전해 장치의 최대 제약이었던 안정성을 향상한 것에 의의를 찾을 수 있다”며, “전이금속계 촉매의 수소생산 효율을 백금촉매 수준으로 끌어올림과 동시에 안정성을 동시에 향상시킨 이번 연구가 친환경 수소에너지 생산기술의 상용화를 한 발 더 앞당기는 데 기여하기를 바란다”라고 밝혔다.본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 이번 연구는 에너지 및 나노 분야의 국제 학술지인 ‘Nano energy’(IF: 16.602, JCR 분야 상위 4.299%) 최신호에 게재되었다.* 논문명: Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production- 제1저자: KIST 수소·연료전지연구단 장인준 박사후연구원- 교신저자: KIST 수소·연료전지연구단 유성종 책임연구원문의: 수소·연료전지연구단 유성종 책임연구원(T.02-958-5260, 010-8753-6008)
편집부 2020-10-11