사이트맵 ×

토탈산업
현대보테코
HPF미네날스

기술과 솔루션

엠쓰리파트너스
hnp인터프라
휴먼텍
한국마쓰이
기사제목
- 한국생산기술연구원, 파트너기업과 압력감지 센서 탑재한 ‘어린이 확인 방석’ 공동개발- 스마트폰으로 실시간 착석 상태 확인 가능, 홀로 방치되면 경보 울려 어린이집 통학차량에 아동이 장시간 방치되면서 사망으로까지 이어지는 안전사고가 매년 발생하고 있다. 정부는 사고방지대책의 일환으로, 2019년부터 ‘잠자는 아이 확인 장치’ 설치를 의무화하기로 했다. 가장 대표적인 확인 장치는 차량 뒤편에 설치되는 하차 확인 벨인데, 벨 설치를 위해 차량 개조가 필요하기 때문에 시간과 비용이 많이 소요된다. 또한, NFC(근거리무선통신)* 장치를 이용하는 경우, 교사가 아동의 NFC 태그를 승하차 때마다 단말기에 일일이 접촉시켜야 해 번거롭고, 이 때문에 시간이 지연돼 차량운행에 차질을 빚는 일도 많다.* 약 10㎝이내 거리에서 데이터를 교환할 수 있는 무선통신 기술로, 이용자가 스마트폰 등의 단말기를 통신 대상기기에 직접 접촉해야 함. 좌석에 착석상태를 인지할 수 있는 초음파 센서를 설치하는 방식은 사람과 사물을 구별해내지 못하며, 초음파의 인체 유해성 논란도 있다. 한국생산기술연구원(원장 이성일, 이하 생기원)이 파트너기업 ㈜제이테크, ㈜키즈소프트와 함께 아동의 승하차 상태를 스마트폰으로 간편하게 확인할 수 있는 어린이 확인 방석을 공동 개발했다. 개발된 방석에는 아동의 착석여부를 감지할 수 있는 압력감지 센서가 내장되어 있으며, 블루투스(Bluetooth)*로 스마트폰과 자동 연결된다.* 스마트폰, 노트북 등의 휴대기기를 서로 연결해 정보를 교환하는 근거리무선기술로, 주로 10m 안팎의 근거리에서 작동함. 교사가 스마트폰에 전용 어플리케이션을 설치하면, 착석여부를 실시간 확인할 수 있고 아동을 차량에 홀로 남겨둘 경우 바로 경보가 울린다. 어린이 확인 방석은 다른 장치들과는 달리 별도의 설치작업 없이 좌석에 비치하기만 하면 즉시 사용할 수 있어 실용적이다. 또한, 운전자나 교사가 아동의 하차상태를 확인하기 위해 차량을 둘러보거나 몸을 움직일 필요가 없으며, 승하차 지연도 발생하지 않는다. 아울러, 방석구매 이후에는 추가비용 발생 없이 2년 주기로 배터리만 교체하면 된다. 어린이 확인방석의 핵심기술은 생기원 동남지역본부 정밀가공제어그룹 조한철 선임연구원이 독자 개발한 블루투스 알고리즘으로, 기존의 상용 알고리즘은 거리가 멀어져 신호가 약해지면 통신연결이 끊긴다는 알림만 주는데 반해, 개발한 알고리즘은 연결이 끊겨야 알림을 주는 독창적인 방식이다. 방석 센서가 차량 속 아동을 감지하고 있을 때 교사가 일정거리 이상 차량과 멀어지면, 스마트폰과의 블루투스 연결이 끊겨 경보가 작동하는 원리다. 한편, 방석에 들어가는 주요 부품의 개발과 제작은 생기원 파트너 기업들 간 자발적 협력과 역할 분담을 통해 이뤄졌다. 센서 제작 전문기업 ㈜제이테크는 아동의 몸무게와 착석 면적을 고려해 좌석 점유 상태를 빠르고 정확하게 인지할 수 있는 압력감지 센서를 개발했다. 또 아동용 스마트워치 전문기업 ㈜키즈소프트는 센서 신호를 스마트폰으로 전송하는 통신부품과 전용 어플리케이션 개발을 맡았다. 제작된 부품의 조립과 최종제품 판매는 ㈜제이테크가 담당한다.  조한철 선임연구원은 “온라인 구매가 가능하고, 누구나 쉽게 사용할 수 있기 때문에 전국 유치원에 빠르게 보급될 것으로 기대된다”고 밝히며, “관련기술은 확장성이 넓어 향후 유아용 카시트나 학교 출결관리 시스템에도 접목할 수 있을 것”이라고 말했다.어린이 확인방석은 시제품 테스트를 거쳐 2019년 초 시중에 선보일 예정이다.
이용우 2019-01-07
기사제목
- 소형 인체착용 형 광센서 반지에 3D 프린팅 배터리를 적용왼쪽부터 안복엽 박사, 김찬훈 박사, 김일두 교수, 제니퍼 루이스 교수 KAIST 신소재공학과 김일두 교수연구팀이 미국 하버드 공과대학 제니퍼 루이스(Jennifer A. Lewis) 교수와의 공동연구를 통해 배터리 디자인의 자유도를 획기적으로 높일 수 있는 기술 개발에 성공했다.  KAIST-하버드 공동연구팀은 3D 프린팅 기술을 이용해 배터리의 형상을 반지 모양, 대문자 알파벳 H, U 등의 글자 모양을 포함해 원하는 구조로 자유롭게 제조하는데 성공했다. 또한, 한국화학연구원 최영민 박사 연구팀과의 공동연구를 통해 소형 인체착용 형 광센서 반지에 3D 프린팅 배터리를 적용했다. 신소재공학과 김찬훈 박사, 하버드 공과대학 안복엽 박사가 공동1저자로 참여한 이번 연구는 재료분야의 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 12월호에 게재됐다.  현재 사용되는 배터리 형상은 코인셀 또는 파우치셀 제작에 최적화된 원형 또는 사각형 구조로 제한돼 있다. 각기 다른 디자인을 갖는 소형 전자소자의 경우 배터리 저장장치가 부피 대부분을 차지하기 때문에 효율적인 공간 활용을 위해서는 배터리의 형상을 자유자재로 바꾸는 기술이 필요하다. 3D 프린팅 방법으로 제조된 자유형상 배터리 및 응용3D 프린팅 기술을 이용한 자유형상 배터리 제조 연구팀은 자유로운 디자인을 갖는 배터리를 만들기 위해 친환경 물 기반 아연 이차전지(Zn-Ion battery) 시스템을 도입했다. 리튬이온 대신 아연이온(Zn2+)을 전하 운반체로 사용하는 이 시스템은 물을 전해질의 일부로 사용하기 때문에 높은 인화성의 유기용매를 전해질로 사용하는 기존 리튬 이차전지보다 안전하다.  유기용매는 수분 및 산소에 노출될 경우 배터리 열화의 원인이 돼 리튬 이차전지의 제조공정을 어렵게 하는 요인 중 하나이다. 연구팀이 도입한 수계 아연 이차전지는 대기 중의 수분 및 산소에 안정적이기 때문에 보다 간편한 대기공정 조건에서 제조할 수 있다.  특히 3D 프린터를 이용한 플라스틱 패키징 적용에도 물은 플라스틱 패키징을 녹이지 않아 보다 간편하게 패키징이 가능한 장점이 있다.  연구팀은 자유로운 형태로 재단이 간편하고 고속 충, 방전이 가능하도록 양극을 설계하기 위해서 전기방사 기술을 이용해 탄소섬유(Carbon fiber) 전류집전체를 제조했다. 이후 전기화학적 활성이 높은 폴리아닐린 전도성 고분자를 탄소섬유 표면에 매우 균일하게 코팅해 전류집전체 일체형 양극을 제조했다.  3D 구조를 갖는 얇은 섬유로 이루어진 폴리아닐린 기반 양극은 2분 동안 50%를 충전하는 매우 빠른 충전 속도를 보였고, 활물질의 손실 없이 쉽게 재단할 수 있어 이를 기반으로 다양한 형태의 배터리 제작이 가능할 것으로 기대된다.  김 교수는 “수용성 전해질을 이용하는 아연 이차전지는 일반 대기환경에서 배터리 패키징 조립을 할 수 있어 3D 프린팅을 활용하면 고객 요구에 맞는 맞춤형 배터리 팩을 손쉽게 제작할 수 있다”라며, “초소형 마이크로 로봇의 외형에 잘 맞는 전력장치나 특이한 디자인의 소형 전자소자의 저장장치로 응용 가능성이 높다”라고 말했다.  이번 연구는 한국연구재단 글로벌 연구실 및 웨어러블 플랫폼센터의 지원을 받아 수행됐다. 한편 김일두 교수는 지난 12월부터 연구가 게재된 ‘에이씨에스 나노(ACS Nano)’ 부편집장(Associate Editor)으로 선임돼 투고논문의 심사여부를 판단하고 심사자(reviewer) 선정 및 게재 승인여부를 결정하게 되었다. 미국과 유럽, 중국이 과학기술을 선도하는 환경에서 40대의 나이에 권위 학술지의 부편집장 선임은 대한민국의 과학발전이 세계적으로도 인정받고 있음을 보여주는 결과이다.  김 교수는 “2018년도 13.709의 피인용지수와 134,596회에 달하는 인용횟수를 갖는 세계적인 권위의 학술지 에이씨에스 나노 부편집장으로 선임돼 영광이다”라며, “에너지 및 센서 분야에 투고된 논문들에 대한 에디터 활동을 통해 KAIST의 위상을 높이고, 대한민국 과학기술의 저변 확대와 세계적인 연구팀들과의 국제협력 기회를 더욱 만드는데 공헌하고 싶다”고 말했다. 
이용우 2019-01-07
기사제목
Fiber 소개 섬유 강화 플라스틱(Fiber Reinforced Plastics; FRP)는 우수한 기계적 성질, 높은 강도, 부식에 대한 높은 저항 등으로 인해 금속의 대체 재료로 광범위하게 사용되고 있다. FRP는 매트릭스 및 섬유의 종류, 생산 공정의 방식에 따라 다양한 기계적 특성을 지니게 되며, 이러한 FRP의 특성을 결정짓는 중요한 요소는 섬유 유형, 함량 그리고 섬유의 길이이다. FRP 제품의 기계적 성질은 성형 완료 후 섬유 길이와 방향에 의존된다.  섬유는 성형 중에 파손이 발생하여 길이가 줄어들 수 있으며, 섬유 배향은 재료의 이방성(An-Isotropy) 특성을 결정한다. FRP 제품의 경우 외부 충격에 의한 변형, 파단은 예측하기 어려우며, 설계자들은 이러한 제약에도 불구하고 FRP를 계속해서 사용해왔다. 최근 미국 에너지부(U.S Department of Energy)는 연구를 통해, 실험방식을 통해서는 복잡한 복합소재의 구조를 관찰하기가 어려우므로 시뮬레이션 프로그램을 이용하는 것이 매우 효과적임을 밝혀냈다. Moldex3D Fiber 모듈 소개 FRP 제품의 이방성 섬유 배향이 제품의 기계적 성질에 미치는 영향은 복합소재 연구 분야에서 줄곧 중요한 이슈가 되어왔다. 사출 제품의 이방성 섬유 배향을 관찰한 결과는 대부분의 경우 전형적인 적층 형상의 구조로 스킨(Skin), 쉘(Shell), 코어(Core) 영역으로 나타난다.  하단의 그림은 FRP를 사용한 사출 제품의 단면에 대한 적층 형상 구조를 보여주는 한 예이다. 실험적으로 도출되는 결과와 비교하여 장섬유(Long Fiber) 및 단섬유(Short Fiber, Chopped Fiber)가 함유된 플라스틱의 성형에서 이방성 섬유 배향을 정확히 예측하는 것이 매우 중요하다. Moldex3D Fiber 모듈은 섬유 배향에 따른 제품의 변형 및 섬유 강화 재료의 이방성 기계적 특성을 정확히 예측할 수 있어, 제품 및 금형 개발자의 설계에 도움을 준다. 이 모듈을 통해서 다음과 같은 결과를 얻을 수 있다. - 장섬유(Long Fiber) 및 단섬유(Short Fiber, Chopped Fiber)의 FRP 섬유 배향 계산 - 제품의 이방성 기계적 특성 도출 - 섬유 배향에 따른 제품의 변형 경향 도출 - Moldex3D의 다른 해석(구조 및 열 해석)과의 연계 및 기타 구조해석용 상용 프로그램과의 연계 해석 지원 Moldex3D는 Fiber 배향 해석의 정확성을 높이기 위해 시험 결과와 비교하면서 새로운 이론과 섬유 배향 모델을 선도적으로 만들어 오면서 끊임없이 발전해왔다. 예전 Moldex3D R13 버전에서 이미 스킨(Skin)과 쉘(Shell) 영역에서 뛰어난 예측 결과를 보여줬지만 코어(Core) 영역에서는 여전히 오차가 있었다. 하지만, Moldex3D R14 버전부터 iARD-RPR라는 섬유 배향 이론모델을 도입한 후 섬유 배향 예측 정확도를 현저하게 높여, 스킨(Skin), 쉘(Shell), 코어(Core)에서 모두 만족할 만한 결과를 얻을 수 있었다.  현재 Moldex3D 사출금형 해석 소프트웨어는 최첨단 iARD-RPR섬유 배향 이론모델을 접목시켜 복잡한 3D 제품의 섬유 배향 특성을 명확하게 분석하여 정확한 예측 결과를 제공하고 있다.
편집부 2019-01-04
기사제목
Ⅰ. 서론  4차 산업혁명 시대의 핵심기술로서 웨어러블 전자기기는 가볍고, 유연하면서 보다 간편하게 휴대할 수 있는 형태로의 기능을 요구하고 있으며, 쉽게 구부릴 수 없는 금속이나 세라믹 재료를 대체할 수 있는 수준의 성능을 가지는 고분자 재료에 관한 연구가 많은 관심을 받고 있다. 2010년대 이후로 스마트 폰 및 스마트 전자기기의 기술이 급속히 발전하면서 2차원의 평면구조이던 스마트기기의 형태가 Curved로부터 빠르게 진화하여 Bendable을 거쳐서 Foldable 또는 Rollable의 형태로 발전하고 있다[그림 1].   국내에서도 수년 전부터 삼성전자와 LG 디스플레이를 중심으로 Foldable 스마트 폰에 대한 기술의 개발이 진행되고 있으며, 정부기관을 중심으로 Foldable, Rollable 디스플레이에 적용하기 위한 개별 요소기술에 관한 연구 개발을 활발히 진행하고 있다. 최근에는 2018년 미국 CES에서 LG 디스플레이가 세계 최초로 65인치 급 Rollable 디스플레이를 전시하여 전 세계적인 관심을 받았으며, 삼성전자도 지속적으로 Rollable 디스플레이와 Foldable 스마트 폰에 대한 연구 개발을 집중하고 있다[그림 2, 3]. 앞으로도 디스플레이 기술은 더욱 편하게 휴대하고, 간단하게 사용할 수 있는 형태로 기술 개발이 진행될 것으로 기대되고 있으며, 더 나아가 인체 밀착형 웨어러블 전자기기의 수요가 급증할 것으로 예측되고 있다. 기존의 딱딱한 형태의 디스플레이를 쉽게 구부리고 둘둘 말아서 사용할 수 있도록 만들기 위해서는 기본적으로 유연한 재료의 사용이 필수적이며, 유리를 대체하기 위한 투명 강화플라스틱부터 전극재료를 대체하기 위한 전도성 소재의 영역까지 다양한 분야에 고분자 재료가 적용될 가능성을 가지고 있다. 특히 전기가 흐를 수 있는 전도성 고분자는 도전성을 나타내는 금속재료를 대체할 후보 물질로서 다양한 스마트 전자기기 분야에 활발하게 연구되고 있다. 이에 본 심층 보고서에는 플렉시블 전자기기 및 웨어러블 전자기기에 응용하기 위한 다양한 고분자 재료 중 전도성 고분자를 이용한 웨어러블 전자기기로의 응용기술에 관한 연구동향을 소개하고자 한다. 전도성 고분자의 개요 및 이를 이용한 코팅공정 기술, 그리고 마지막으로 최근 웨어러블 전자기기로의 전도성 고분자의 응용 현황을 소개하고자 한다.Ⅱ. 전도성 고분자 응용기술 개발동향1. 전도성 고분자의 개요 Polyethylene을 포함한 대부분의 고분자는 일반적으로 전기가 흐르지 않는 절연체의 특성을 보이지만 polyacetylene과 같이 공액 구조(conjugated structure)를 가지는 고분자의 경우는 전기가 흐르는 특성을 보이는 것으로 알려져 있으며, 이 사실을 1970년대에 Alan J. Heeger를 비롯한 3명의 과학자가 발견하여 2000년에 노벨상을 수상하였다[그림 4]. Polyacetylene은 탄소-탄소 사이의 이중결합과 단일결합이 교대로 연결되어 전자의 이동을 효과적으로 도울 수 있는 통로를 만들 수 있으며, 도전성을 높여주기 위해서 요오드(I2)와 같은 시료를 이용해 화학적으로 도핑(doping) 처리를 하게 되면 금속에 버금가는 우수한 전도도를 가지는 전도성 고분자를 구현할 수 있다. 실제로 고분자는 대부분 절연 특성을 보이지만 전도성 고분자의 공액 구조를 적절히 조절하고 효과적으로 도핑 처리를 하게 되면 102~106 S/m 수준의 반도체에 가까운 전기전도도를 보일 수 있다[그림 5, 6]. 몇 가지 대표적인 전도성 고분자의 특징을 살펴보면, 먼저 polyacetylene은 acetylene 단량체를 금속 촉매반응을 통해 중합함으로써 쉽게 합성할 수 있다. 전도성 고분자 중 가장 간단한 구조를 가지고 있으며, 생산비용이 저렴한 장점이 있고 도핑제를 잘 선택하게 되면 구리와 유사한 수준의 전기전도도를 보일 수 있다. 반면에 공기 중에서도 반응성이 높아 쉽게 특성을 잃어버리고 온도에 대한 저항성이 높다는 것은 단점이다. Polyaniline은 고분자의 산화-환원 상태에 따라 전기가 통하지 않는 절연상태에서 부분적인 산화반응 또는 이온화가 됨에 따라 전기가 흐르는 상태로 변화될 수 있다[그림 7]. 일반적으로 polyaniline은 우수한 전기전도도의 특성을 보이는 것으로 알려져 있고, 화학적 열적 저항성이 뛰어난 특성을 보이며, 고분자 사슬구조의 강직한 특성으로 인하여 높은 기계적 물성을 보인다.  반면에 강직한 분자구조는 낮은 가공성, 유연성 및 용해도에 있어서 부정적인 영향을 미친다. Polyaniline은 한때 강판의 부식방지 코팅용으로 활용하기 위해 많이 연구되었으나 웨어러블 기기에 응용하기 위한 측면에서는 고분자 구조의 강직성 때문에 쉽게 구부리기 어렵고 용해도가 낮아 인쇄공정에 부적합하여 사용용도가 제한적이다.  Polypyrrole 또한 polyaniline과 같이 산화-환원 및 이온 도핑 효과에 따라 전기가 잘 흐를 수 있는 상태를 구현할 수 있으나 주쇄에 존재하는 pyrrole기에 의한 강직한 구조를 가지고 있어서 용해도가 낮고 쉽게 구부러지지 않아서 센서나 전도성 코팅막을 만드는 용도로는 사용할 수 있지만 실제로 플렉시블 웨어러블 전자기기를 구현하기 위한 용도로는 부적합하다. Polythiophene은 2000년대 들어서 유기 반도체 전계효과 트랜지스터(Organic Semiconducting Field-Effect Transistor, OFET) 소자의 개발동향과 맞물려 많은 주목을 받았다. 기존 실리콘 기반의 반도체 소자를 제조하기 위해서는 진공증착, 박막에칭 등 고가의 장비를 필요로 하는 복잡한 공정기술이 절대적이어서 생산성 향상 및 웨어러블 소자에 적용하기 위한 유연성을 확보하기 위해서는 보다 간편한 공정이 가능하면서 유연한 재료의 사용이 중요하게 되었다.  초기에 개발된 Polythiophene은 기존 rigid 타입의 전도성 고분자와 마찬가지로 thiophene 단량체를 기본 구조로 하는 고분자의 용해성이 높지 않아 화학증착을 비롯한 소자공정을 이용하여 전도성 코팅막을 형성하였으나, 3번 탄소 위치에 다양한 종류의 알킬기를 도입하면서 용매에 쉽게 녹을 수 있는 polythiophene 고분자를 제조하는 기술이 개발되어 본격적으로 인쇄공정을 기반으로 한 인쇄 전자소자의 개발과 함께 급속도로 성장하였다[그림 8].  대표적인 예는 P3HT라고 불리는 poly(3-hexylthiophene)이 있다. P3HT는 chloroform과 같은 유기용매에 쉽게 용해되어 ink-jet printing과 같은 공정기술을 사용하여 기존 반도체 공정보다 간편하게 유연한 소자를 제조할 수 있었으며, P3HT를 기반으로 한 고성능의 플렉시블 OFET 연구가 활성화되었다.  그러나 thiophene 구조 내에 비전도성의 알킬기를 도입함으로써 polythiophene이 가지고 있는 고유한 전도성에 상당한 손실이 발생하여 전 세계적으로 많은 연구가 활발히 진행되었음에도 불구하고 전하이동도(mobility)의 값이 1 cm2/Vs 이하의 낮은 값을 보여 오랜 기간 연구되었음에도 아직까지 상업화에 이르지 못했다. 그러나 유기태양전지(Organic Photovoltaic Solar Cells, OPV)의 활성화와 함께 다시 주목 받고 있는 전도성 고분자로서 Perovskite가 발견되기 전까지는 유기태양전지분야에서 가장 우수한 광전효율을 나타내는 전도성 고분자로서 각광을 받았다.  현재까지 가장 상업화에 성공한 고분자는 thiophene에 dioxyethyrene이 연결된 구조를 가지고 있는 Poly(3,4-ethy-lenedioxythiophene, PEDOT) 고분자로, 독일 Heraeus사에서 생산하여 세계 각지에 공급하고 있다[그림 9]. PEDOT 고분자는 보통 PEDOT:PSS로 불리는데 이는 PEDOT이 기본적으로 용매에 녹기 어려운 구조를 가지고 있지만 물에 녹는 전해질 고분자인 poly(4-styrene sulfonate, PSS) 고분자와 배위 결합을 형성하여 물에 녹는 전도성 고분자의 형태로 제조하였기 때문이다.  PEDOT:PSS는 수용액으로 존재할 뿐만 아니라 투명하고 비교적 높은 전도도를 보여 투명 기판에 전도성 코팅막을 형성하는 많은 응용분야를 만들어 내고 있으며, 대전방지 필름이나 투명전극 필름을 제조하기 위한 전도성 코팅소재로 활용하기 위해 기업체에서 많은 관심을 가지고 있다. PEDOT:PSS는 수용액으로 되어 있기 때문에 용액공정이 가능하고 인쇄공정을 이용해서 쉽게 전도성 코팅막을 제조할 수 있으나, PEDOT의 공액 구조에서 오는 푸른색의 고유한 색상을 가지고 있어 이에 따른 응용분야의 제약이 있을 수 있다. 최근에는 PSS 대신에 Tosylate 기를 결합한 PEDOT:Tos와 같은 고분자도 개발되고 있다. [그림 10]에는 앞서 설명한 몇 가지 전도성 고분자들의 대표적인 화학구조를 요약하였다. 전도성 고분자는 일반적으로 고분자가 가지고 있는 공액 구조와 주쇄에 연결된 주요 반복단위의 형태, 그리고 곁가지에 위치하고 있는 사슬의 종류에 영향을 받아 절연체에서부터 높은 전도도가 흐르는 상태로 조절할 수 있다.  개발 초기에는 각각의 대표적인 고분자 형태를 단독으로 사용하거나 P3HT 같이 용해도를 높여 주기 위해 곁가지를 도입하는 형태로 사용되었으나, 최근에는 사용하려는 용도에 맞는 성능을 구현하기 위해서 여러 공액 분자구조를 공중합 형태로 혼합하여 사용하는 경우가 많아지고 있으며, 비교적 우수한 성능을 보이는 것으로 알려져 있다[그림 11]. 특히 유기 태양전지에 대한 연구가 활발히 진행되면서 전하 및 전자를 주고받을 수 있는 각각의 전도성 관능기들을 동시에 가지고 있는 다양한 형태의 전도성 고분자 공중합체를 설계하고 합성하였으며, 10% 이상의 광전효율을 나타내는 수준까지 발전한 것으로 알려져 있다.2. 전도성 고분자 코팅 기술 전도성 고분자를 사용함으로써 기대되는 가장 큰 효과는 플라스틱 소재를 활용한 유연성 확보와 더불어 인쇄공정 적용을 통한 생산성 향상이다. 그럼에도 불구하고 초기의 전도성 고분자는 용매에 잘 녹지 않아서 대부분 증착공정을 사용하여 전도성 코팅막을 제조하였다[그림 12]. 진공 챔버 내에서 고분자 단량체를 기화시켜 원하는 기판 표면에서 직접 성장시키거나 중합하는 방법을 통해서 표면에 전도성 막을 형성하였다.  이 방법의 장점은 용매에 쉽게 녹지 않는 공액구조의 전도성 고분자를 쉽게 표면에 증착할 수 있다는 점이며, 코팅막의 두께를 수 ㎚에서 수 마이크로까지 균일하게 코팅할 수 있는 장점을 가지고 있다. 그러나 증착기의 크기에 의존해야하기 때문에 소자의 크기나 응용제품의 특성에 따라 크게 영향을 받는다.  Polyanilne과 polypyrrole 같은 고분자는 전기중합을 이용해서 금속이나 전도체 표면에 쉽게 코팅할 수 있다[그림 13]. Aniline, pyrrole과 같은 단량체를 함유하고 있는 용액에서 전기를 걸어주면 전기화학 반응에 의해서 한쪽 전극에 선택적으로 전도성 고분자 층이 중합될 수 있다. Polyaniline과 polypyrrole이 전기중합을 이용해서 코팅되는 고분자로 알려져 있으나 이외에도 PEDOT이나 polythiophene 등 많은 전도성 고분자들이 전기중합을 통해 합성될 수 있다. 화학증착이나 전기중합과 같은 방법은 반응기의 크기에 의존하고 만들어진 고분자들의 구조가 대체적으로 Rigid한 구조를 가져서 반복적인 구부림에 쉽게 손상되는 단점을 가지고 있다. 웨어러블 전자기기의 중요한 기능 중 하나는 반복적인 구부림 및 연신-수축에 대한 내구성을 가지고 있어야 하고, 금속이나 세라믹이 아닌 플라스틱이나 섬유를 기판으로 사용해야 한다.  최근에 개발된 전도성 고분자는 대부분 우수한 전도도를 가지게 설계됨과 동시에 용매에 대한 용해성을 좋게 해서 용액공정이 가능한 형태로 개발하는 것이 일반적이다. 용액공정이 가능하도록 함으로써 기존 증착공정보다 공정온도를 크게 낮출 수 있어 내열도가 낮은 플라스틱에도 적용이 가능하다. 기존 인쇄기술과 접목시켜 ink-jet, slot-die, 스크린 프린팅, 스프레이 코팅, 그라비아 인쇄 등 다양한 방법을 사용해서 전도성 고분자를 코팅 및 인쇄할 수 있다[그림 14].  각 기술의 특징 및 장‧단점, 인쇄가능 전도성 고분자 잉크의 물성, 인쇄면의 형상에 관한 정보는 [표 1]에 나타냈다. 만들고자 하는 전도성 코팅막의 패턴 사이즈, 두께 등 응용 제품에 따라 각기 다른 방법들을 사용하여 효과적으로 전도성 코팅막을 구현할 수 있다. 최근에는 두루마리 형태의 필름을 연속적으로 인쇄할 수 있는 롤투롤(roll-to-roll) 기술이 발전하여 연속 공정을 통해 넓은 크기의 전도성 인쇄가 가능해져서 생산성을 크게 높아지게 하였다[그림 15]. 앞으로도 전도성 고분자를 이용한 코팅공정 기술의 발전방향은 연속공정을 기반으로 한 대면적화와 미세 패턴을 형성할 수 있는 기술에 초점이 맞추어질 것으로 예측된다.3. 웨어러블 전자기기 응용연구동향 2000년대 초반 전도성 고분자는 강판의 부식방지 코팅용으로 사용되었다. polyaniline 또는 polypyrrole 고분자를 이용하여 전도성 고분자에서 전자를 이동시키는 특성이 강판의 산화-환원 반응을 통한 부식방지에 효과가 있다는 연구결과가 발표되었다[그림 16]. 기존에 사용되던 크롬 기반의 부식방지 코팅기술을 전도성 고분자 코팅으로 대체하여 크롬이 용출됨에 따라 나타날 수 있는 생체 유해성을 낮춰줄 수 있을 것으로 기대되고 있다.전도성 고분자가 가장 활발히 연구되고 있는 분야는 유연한 특성을 살릴 수 있는 웨어러블 전자기기이다. P3HT와 같은 용매에 녹을 수 있는 전도성 고분자의 개발은 용액화하여 습식공정이 가능하도록 하였으며, 보다 간편한 인쇄공정을 적용하여 유기 반도체 트랜지스터 및 유기 발광 다이오드(OLED), 태양전지 등 다양한 응용분야에 사용할 수 있음이 알려져 있다.  P3HT를 PCBM과 혼합 코팅하여 상 분리 후 활성 층으로 사용하면 태양광을 전기로 변환시키는 유기 태양전지를 만들 수 있다[그림 17]. 전자 주게와 전자 받게가 서로 활발히 상호작용을 함으로써 빛으로부터 생성된 포톤 에너지와 전자를 각 층으로 전달하여 전기를 발생시킨다.  초기 P3HT를 이용한 유기 태양전지는 광전효율 5%대로 유연한 특성에도 불구하고 실리콘 태양전지에 미치지 못하였으나, 최근에는 PCDTBT, PTB7 등과 같은 공액분자의 구조를 제어하여 10% 이상의 효율을 보이는 전도성 고분자 기반 유기 태양전지가 개발되었으며, perovskite의 사용을 통해 20%대에 달하는 효율을 보이는 태양전지도 속속 보고되고 있다.  유기 태양전지와 유사한 구조로 OLED는 전도성 고분자 층을 유기발광 층으로 사용하여 전기를 빛으로 변환하여 특정한 색을 나타낸다[그림 18]. 초기에 사용된 OLED용 전도성 고분자는 poly(p-phenylene vinylene, PPV) 또는 PPV를 함유하고 있는 poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene](MEH-PPV)와 같은 공중합 유도체를 사용하였다.  OLED용 전도성 고분자는 고분자가 가지고 있는 공액구조의 고유한 특성에 따라 특정 파장의 빛을 방출하게 되며, 이때 파랑, 초록, 빨강 등 다양한 색상을 만들어 낼 수 있다. 지금까지 전도성 고분자를 이용한 전자소자로의 제품화 측면에서 가장 앞서 있다고 볼 수 있다.2000년대의 전도성 고분자 기반 전자소자 응용기술은 대부분 전도성 고분자를 소자로 제작하여 전기적 특성을 관찰하는데 집중되어 있었다. 전도성 고분자를 이용한 전자소자로의 응용에 있어서 반복적인 구부림, 연신-수축 등 신뢰성에 대한 관심이 높아짐에 따라 기계적인 내구성을 가지는 전도성 고분자 기반의 전자소자를 개발하기 위한 연구가 진행되었다[그림 19].  다중 수소결합을 가질 수 있는 관능기를 전도성 고분자에 도입하여 반복적인 연신-수축으로 인해 손상된 전도성 표면을 분자 간 및 용매와의 상호작용을 통해 자발적으로 쉽게 복구되어 전기적 특성을 보존시킬 수 있다. 자가 치유기능을 가지는 전도성 고분자로 OFET을 제조하였을 때 인위적으로 손상시킨 소자는 일시적으로 성능이 떨어지는 것이 관찰되었으나, 용매 또는 열처리를 통해 다중 수소결합을 활성화시켜 자발적으로 손상된 코팅막이 복구되어 전기적 특성이 원상복귀 될 수 있음이 보고되었다.  또한 최근에는 전도성 고분자의 웨어러블 전자기기로의 개발 관심과 맞물려 실제 인체와의 친밀도를 높여 줄 수 있는 전자피부와 같은 형태로 연구가 진행되고 있다[그림 20]. 아직까지는 금속의 전도성 부분을 전도성 고분자로 대체하여 의수나 로봇에서 작동 가능한 센서 등의 형태로 시제품 만드는 수준이지만 기술의 발전이 더 진행된다면 실제 인체에 부착하여 피부로 사용할 수 있는 기술로 개발이 될 것으로 기대된다. 웨어러블 전자소자로 응용하기 위한 소자의 형태로는 직접 인체에 부착할 수 있는 전자피부와 더불어 의복을 제작하여 사용하는 섬유형 전자소자가 있다[그림 21]. 의복을 제조하는 개별 섬유를 하나의 단위 소자로 제조하여 각각의 기능을 할 수 있도록 만드는 것으로 웨어러블의 개념과 가장 부합하는 기술로 많은 관심을 받고 있다.Ⅲ. 결론 및 전망 전도성 고분자는 1970년대 처음 발견된 이래로 2000년대 들어 급속도로 성장하기 시작하였다. 초기에는 단순히 OFET, OLED, OPV 등 개별 전자소자로의 기능을 나타내는데 집중했던 반면에, 최근에는 소비자의 요구에 부합하기 위한 연구 개발의 형태로 진화하고 있다.   재료가 가지고 있는 고유한 물성은 매우 좋지만 단단하여 구부리기 어려운 금속이나 세라믹은 Rollable하거나 스트레쳐블(Stretchable)한 미래형 전자기기의 수요를 만족시키기에는 본질적으로 한계가 있다. 따라서 전도성 고분자가 지금보다 더 발전하여 금속 또는 세라믹이 가지고 있는 전기적 물성의 수준을 가지면서 기존 고분자 소재가 가지고 있는 유연성을 유지한다면, 다양한 웨어러블 전자기기를 만드는데 핵심적인 역할을 할 수 있을 것으로 기대된다.  또한 그에 적합한 공정기술의 개발 및 생산성을 향상시킬 수 있는 연속공정 기반의 인쇄기술도 같이 개발해야 할 중요한 부분이다. 앞으로의 전도성 고분자 기술개발 방향은 웨어러블 응용분야에 따른 맞춤형 소자로서의 기본 구동성능을 만족시킴과 동시에 기계적인 변형에 대응할 수 있는 기능도 종합적으로 요구될 것이다. 이에 따라 고분자 자체의 분자구조가 더욱 복잡해지고 합성하기 어려워 질 것이지만, 현재의 기술발전 속도와 전 세계적인 연구 집중도 및 투자를 고려하면 빠른 시일 내에 상상하던 제품들이 시장에 출현하게 될 것으로 기대된다.
편집부 2019-01-04
기사제목
잘 흐르는 산화 그래핀 용액, ‘꿀 같은 고분자’로 완성!- UNIST 김소연 교수팀, 고분자와 산화 그래핀 간의 상호작용 규명- 고분자 첨가로 용액 공정의 농도 한계 벗어나… ‘ACS Nano’ 발표 그래핀* 기반의 소재로 활용 가능한 ‘산화 그래핀 용액’을 쉽게 다루는 기술이 나왔다. ‘고농도의 산화 그래핀 용액은 흐르지 못한다’는 문제를 푼 연구로 주목받고 있다.* 그래핀(Graphene): 탄소 원자로 만들어진 원자 한 층으로 이뤄진 육각형 벌집 구조의 나노 소재. 두께가 0.2㎜ 얇아서 투명성이 높고, 상온에서 구리보다 100배 많은 전류를, 실리콘보다 100배 빨리 전달할 수 있다. 열전도성이 최고라는 다이아몬드보다 2배 이상 높고, 기계적 강도도 강철보다 200배 이상 강하지만 신축성이 좋아 늘리거나 접어도 전기전도성을 잃지 않는다. 이러한 우수한 특성 때문에 미래 소재로 각광받고 있다. UNIST(총장 정무영) 에너지 및 화학공학부의 김소연 교수팀은 꿀처럼 끈적끈적한 고분자를 첨가해 ‘산화 그래핀 용액이 잘 흐를 수 있도록’ 만들었다. 고분자를 얼마만큼 첨가해야 용액 공정에 유리한지도 밝혀내 소재의 활용범위를 크게 넓혔다. 산화 그래핀은 그래핀이 산화된 물질로, 그래핀만큼 좋은 물성을 가질 수 있는 잠재력 있는 재료다. 그래핀을 합성하는 기술은 까다롭지만, 산화 그래핀은 액정 상을 형성하고 물에 분산된 용액 상태로 공정을 진행할 수 있어 훨씬 손쉽게 대량생산이 가능하다. 이런 특성 덕분에 최근 소재로서 많은 관심을 받고 있다. 하지만 물속에 분산된 산화 그래핀의 농도가 계속 증가하면, 점도가 급격하게 커지면서 유동성을 잃고 진흙같이 변한다. 이는 공정 효율을 떨어뜨리는 단점으로 꼽혔는데, 김소연 교수팀은 이번 연구로 그 원리를 규명하고 제어가 가능하다는 걸 밝혀냈다. 김소연 교수는 “산화 그래핀 용액 공정의 효율을 높이려면, 고농도 산화 그래핀 용액에서도 충분한 유동성이 확보돼야 한다”며, “이번 연구에서는 고분자를 첨가하는 간단한 방법으로 용액 속에 산화 그래핀이 고르게 분산돼 잘 흐르게 만들었다”고 설명했다. 고농도의 산화 그래핀 용액이 유동성을 잃는 이유는 입자들 사이에 나타나는 강한 정전기적 반발력(electrostatic repulsion) 때문이다. 산화 그래핀 표면은 음전하가 강해 입자들끼리 서로 밀어내는데, 이로 인해 한 입자가 존재하는 큰 공간(유효부피)이 필요해진다. 입자들이 많아질수록 용액 내에서 자유롭게 움직일 공간은 줄어들고, 일정 농도를 넘어서면 산화 그래핀 입자들이 꼼짝할 수 없게 되는 것이다. 제1저자인 심율희 UNIST 화학공학과 석·박사통합과정 연구원은 “이 연구의 묘미는 용액의 점도를 낮추기 위해 꿀처럼 점도가 큰 고분자를 사용한다는 점”이라며, “산화 그래핀 입자와 상호작용할 수 있는 고분자를 첨가하면 고분자가 만드는 고갈인력 때문에 정전기적 반발력을 낮추고 유효부피를 줄이게 된다”라고 설명했다. 고갈인력은 고분자가 자신들의 자유로운 공간을 확보하기 위해 상대적으로 큰 산화 그래핀 입자들을 끌어당기게 만드는 힘이다. 이 덕분에 산화 그래핀끼리 밀어내는 힘이 줄고 유효부피도 작아진다. 또 고분자는 산화 그래핀 표면에 흡착됨으로써 입자끼리 직접 맞닿는 걸 막아 입자가 응집되는 문제도 해결할 수 있다. 연구진은 새로운 산화 그래핀 용액이 공정에 미치는 영향을 그래핀 섬유를 제작해 확인했다. 기존에는 건조 과정에서 용매가 증발하며 공극(void)가 나타나 그래핀 섬유의 전기전도도와 기계적 강도를 떨어뜨렸다. 그러나 고분자 첨가로 만든 산화 그래핀 용액을 쓰자 공극이 크게 줄어들면서 산화 그래핀이 섬유 내에서 더욱 촘촘하게 배열됐다. 김소연 교수는 “물속에서 산화 그래핀이 분산되는 현상을 체계적으로 이해하고, 분산 특성을 제어할 가능성을 제기한 데 연구의의가 있다”라며, “산화 그래핀 용액 공정의 효율을 높이고, 궁극적으로 물성을 높이기 위해서는 산화 그래핀의 본질적인 미시적 거동 관찰이 중요하다는 것을 시사한다”고 강조했다.    이번 연구는 UNIST의 신태주 교수, KAIST의 김상욱 교수와 이경은 박사도 참여했다. 연구 수행은 UNIST-PAL 빔라인과 한국연구재단의 나노소재기술개발사업, 선도연구센터지원사업, 창의연구지원사업을 통해 이뤄졌다. 연구 내용은 미국화학회(American Chemical Society)에서 발행되는 권위 있는 학술지인 ‘에이씨에스 나노(ACS Nano)’* 11월 27일 자(11호)에 게재됐다.(논문명: Tailored Colloidal Stability and Rheological Properties of Graphene Oxide Liquid Crystals with Polymer-Induced Depletion Attractions)* 에이씨에스 나노(ACS Nano): 미국화학회(ACS)에서 발행하는 과학 학술지로, 나노과학과 기술(Nanoscience &Nanotechnology) 분야에서 세계 순위 4위로 꼽히는 권위지이다.(2017년 기준 Impact Factor: 13.709)
편집부 2019-01-01
기사제목
‘이산화탄소’ 없애고 ‘수소’와 ‘전기’ 만든다- UNIST 김건태 교수팀, 하이브리드 금속-이산화탄소 시스템 개발- 쉬운 이산화탄소 전환 방법 제시해… 국제 학술지 iScience 게재지구 온도를 높이는 ‘이산화탄소’를 없애는 동시에 ‘전기’와 ‘수소’를 생산하는 획기적인 시스템이 개발됐다. 기후변화를 막고, 에너지를 저장하며, 미래 에너지원을 확보하는 일석삼조의 기술로 주목받고 있다.UNIST(총장 정무영) 에너지 및 화학공학부의 김건태 교수팀은 이산화탄소를 활용해 전기와 수소를 생산하는 세계 최초의 기술인 ‘하이브리드 나트륨 금속-이산화탄소 시스템(Hybrid Na-CO₂ system)’을 개발했다. 이 시스템은 물에 녹인 이산화탄소를 활용하는 전지 시스템인데, 작동 과정에서 이산화탄소는 제거하고 전기와 수소를 생산한다.김건태 교수는 “이산화탄소 배출량 증가로 인한 기후변화에 대응하기 위해 이산화탄소 활용 및 저장 기술(CCUS)이 주목받고 있다”라며, “화학적으로 안정적인 이산화탄소 분자를 다른 물질로 쉽게 전환하는 게 관건인데, 새로운 시스템에서 ‘이산화탄소의 용해’로 이 문제를 풀었다”고 설명했다. 하이브리드 나트륨-이산화탄소 시스템은 연료전지처럼 음극(나트륨 금속)과 분리막(나시콘), 양극(촉매)로 구성된다. 다른 전지와 달리 촉매가 물속에 담겨 있으며, 음극과 도선으로 연결된 상태다. 물에 이산화탄소를 불어넣으면 전체 반응이 시작돼 이산화탄소는 사라지고, 전기와 수소가 만들어진다. 이때 이산화탄소의 전환 효율은 50%로 높다.반응 원리는 크게 세 단계로 정리된다. 우선 물(H₂O)에 이산화탄소(CO₂)를 불어넣으면 ① 수소 이온, 즉 양성자(H⁺)와 탄산수소 이온(HCO₃⁻)이 만들어진다. 양성자가 많아져 산성으로 변한 물은 ② 나트륨 금속에 있던 전자(e⁻)들을 도선을 통해 끌어당기면서 전자의 흐름, 즉 전기를 만든다. ③ 수소 이온(H⁺)은 전자를 만나 수소 기체(H₂)로 변한다. 마지막으로 음극에서 전자를 잃은 나트륨 이온(Na⁺)은 분리막을 통과해 탄산수소염(HCO₃⁻)과 반응해 탄산수소나트륨(NaHCO₃)이 된다.김정원 UNIST 에너지공학과 석·박사통합과정 연구원(공동 제1저자)은 “이산화탄소의 전환 효율과 수소의 발생 효율을 정량 분석한 결과, 이산화탄소를 지속적으로 소모하면서 수소와 전기를 동시에 생산한다는 걸 입증했다”고 전했다.실제로 이 시스템은 전극의 손상 없이 1,000시간 이상 작동되는 안정성을 보였다. 자발적인 화학반응을 유도해 이산화탄소 활용과 제거에 응용 가능할 전망이다.김창민 UNIST 에너지공학과 석·박사통합과정 연구원(제1저자)은 “이산화탄소는 화학적으로 매우 안정돼 화학구조를 깨고 다른 물질로 바꾸기 매우 어렵다”라며, “이산화탄소를 물에 녹여서 활용하는 방법은 현실적인 CCUS 기술로 효율적인 편”이라고 설명했다.김건태 교수는 “이번 연구는 단순히 새로운 이산화탄소 활용 시스템에 그치지 않고 더 많은 파생 연구로 이어질 것”이라며 “전해질과 분리막, 시스템 설계, 전극 촉매 등이 개선되면 더 효과적으로 이산화탄소를 줄이면서 수소와 전기를 생산할 수 있을 것”이라고 내다봤다.이번 연구는 UNIST 에너지 및 화학공학부의 조재필 교수와 조지아공대(Georgia Institute of Technology)의 메이린 리우(Meilin Liu) 교수도 함께 참여했다. 연구결과는 세계적 과학저널 셀(Cell)의 자매지인 ‘아이사이언스(iScience)’ 11월 30일(금) 출판됐다.   * 논문명: Efficient CO utilization via a hybrid Na-CO system based on CO dissolution)
편집부 2019-01-01