사이트맵 ×

토탈산업
현대보테코
리텍전시회

기술과 솔루션

엠쓰리파트너스
hnp인터프라
휴먼텍
한국마쓰이
기사제목
자료제공: 우진플라임 기술교육원 / 교수 한선근< 성형품에 나타날 수 있는 불량의 종류 >5. Weld Line (용접 선)Weld Line이란 플라스틱 부품상 Weld Line은 흔히 광학적/기계적 결함으로 나타난다.또 노치 현상 및 색상 변화가 나타날 수 있다. 노치 현상은 특히 표면이 곱고, 고광택을 가진 Black 또는 짙은 색상에서 많이 나타나며 투명 제품에는 더욱 선명하게 나타난다.< 원인 >Weld Line은 2개 이상의 유동 선단이 만날 때 발생하는 현상이다.수지 흐름의 볼록한 유동 선단은 서로 접촉하여 납작해지고 서로 붙는다. 이 과정은 이미 높아진 점성을 가진 유동 선단의 퍼짐이 요구된다. 따라서 높아진 점성으로 인해 온도와 압력이 충분하지 못하면 유동 선단의 모서리는 충분히 Purge지 못하고 노치를 형성한다.또한, 유동 선단은 더 이상 균일하게 용융/융합되지 못하고 약한 지점을 만든다.첨가제(안료, 윤활제)가 포함된 수지를 사용할 경우 Weld Line 주변에서 이들 첨가제가 심한 방향성을 나타내며, 이로써 Weld Line 주변에서 색상이 달라지는 것을 유발한다. 가장 중요한 해결책은 금형 온도를 올리는 것이며, 금형 온도를 올리면 Cooling Time은 정상적인 금형 온도에 비하여 약 2%/℃ 만큼 길어진다. < Weld Line 원인/대책 요약 >성형재료가 Cavity 내에서 Core Pin 주위를 흐를 때 또는 2개 이상의 흐름이 완전히 결합되지 않을 때 생기는 Line이다. 이 Line은 Gate로부터 분류가 있는 한 Weld Line을 완전히 제거하는 것은 불가능하므로 불량 현상이 최소한으로 되도록 방한을 모색하여야 한다.- 문제점과 현상: Weld Line 부근에서 색이 다른가? < 대책 > - 미세한 안료를 사용한다.- 가벼운 수지를 사용한다.- 문제점과 현상: 금형 구조상 개선이 가능한가?< 대책 > - Sprue Runner Size를 + 방향으로 조절한다.- Gate Size를 + 방향으로 조절한다.- Gate 추가 및 위치를 이동한다. (Weld Line 은폐)- Weld Line 부의 Air Vent를 확인하고 조치한다.- 수지 유동을 저해하는 부분을 확인하고 조치한다.- 금형의 성형부를 Polishing 한다.- 문제점과 현상: 성형 조건으로 개선이 가능한가?< 대책 > - 금형 온도를 + 방향으로 조절한다.- 수지 온도를 + 방향으로 조절한다.- 사출 속도를 + 방향으로 조절한다.6. Silver Streak(수분 줄)수분 줄은 성형품의 표면에 열린 U자 모양으로 나타난다.수분 줄 주위의 표면은 흔히 거칠고 기공을 나타내며, 금형 표면상의 수분 때문에 발생한 수분 줄은 폭이 넓고 거친 얇은 층 모양으로 나타나는 현상이다.< 원인 >보관 또는 성형 중 수지 입자, 수지의 수증기 형성으로 수분이 흡수된다.유동 선단에서 속도 때문에 Gas가 기포 및 수증기 형태로 수지의 표면으로 밀고 들어간다. 성형에서 보압을 가하기 때문에 터진 기포는 움직이는 유동 선단에 의하여 변형되어 금형 벽면에 고화된다.수분 줄이 생길 수 있는 원인: 금형 Cooling Line 누수, 금형 표면의 결로 현상, 수지 건조 불충분, 수지 보관 불량< 문제점 분석 >이렇듯 수분 줄은 재료 안에 함유된 수분의 영향으로 나타나는 현상이라도 해도 과언이 아니기 때문에 재료의 건조 상태를 늘 확인하여야 한다.7. 공기 줄 (Air Streak)대개의 경우 공기 줄(Air Streak)은 망 모양 또는 백색 줄로 나타나고 Domes, Rib 및 살 두께의 변화가 있는 주위에서 찾아볼 수 있는데, Sprue 및 Gate 주위에서 시작하여 박막 모양의 줄이 나타날 수 있다. 또는 Air Hooks은 글자와 같은 조각부의 오목부나 돌출부 근처에 나타날 수 있다.< 원인 >금형 내로 수지 충전 중 시간 내에 빠져 나가지 못하는 공기는 성형품 표면까지 밀려 유동 방향으로 퍼진다. 특히 글자, Icon, Mark 등과 Rib, Dome 등 오목부 부근의 공기는 휘말려 수지에 의하여 갇힌다. 그 결과 Air Hooks가 형성된다.사출성형기 가소화 장치에 수지를 계량할 때 Screw 앞쪽(Nozzle) 부위에서 공기가 흡입되면, 공기는 사출 중 Cavity로 운반되어 수지가 고화되는 금형 벽을 향해 밀린다. 따라서 이 경우는 Gate 주변에 공기 줄(Air Streaks)이 많이 나타난다.< 공기 줄 원인/대책 요약 >성형품 표면에 수지의 유동 방향으로 나타나는 은색의 선이나 구상의 점을 말한다. 이것은 성형 수지에 수분이 흡수되었거나 성형 수지의 일부 또는 전부가 Cylinder 내에서 과열되어 분해 Gas 발생 시 특히 잘 나타난다.< 원인과 대책 >
편집부 2022-08-22
기사제목
 1. 실리콘의 개요규소와 실리콘(silicone)은 대부분의 산업 분야에서 필수적으로 사용되는 고기능 재료로서 유기성과 무기성을 겸비한 독특한 화학 재료이다. 일반적으로 실리콘은 <silicon>과 <silicone>의 두 개의 용어로 단어가 서로 유사하나, 화학적으로는 엄밀히 구별된다. 즉, silicon은 원소기호 Si로 표시되는 규소를 의미하며, 암회색의 금속상 물질로 반도체용 실리콘 웨이퍼, 합금 페로실리콘(ferrosilicon) 등의 제품으로 사용된다. 한편, Silicone은 유기기를 함유한 규소(organosilicon)와 산소 등이 화학결합으로 연결된 폴리머를 의미한다. 실리콘은 유기성과 무기성을 겸비한 독특한 재료로서 여러 형태로 모든 산업 분야에서 필수적인 고기능 재료로서 위치를 점하고 있다.실리콘 오일의 분자 구조는 사슬 모양의 분자 구조를 가지고 있으며, 이분자의 골격을 형성하고 연결하는 것은 실록산 결합으로 개개의 분자가 독립해서 존재하므로 분자 사슬은 상호 간 자유로이 움직일 수 있어서 유동성을 가진다. 즉 액체의 성질을 띠는 것으로 중합도를 조절하여 다양한 점도별 제품을 얻을 수 있다.실리콘 고무의 분자 구조는 긴 사슬형의 고중합체로서 나선형 구조를 형성하고 있으며, 이와 같은 구조에서는 오일의 경우에서와는 달리 분자 사슬이 상호 이동할 수 없으므로 유동성은 없어지나, 분자의 자유도가 커져 신축성이 생겨 고무의 형상을 나타내고, 고무의 가교가 진행되어가면 분자의 자유도가 감소하여 신축성이 줄어들고 경도가 올라간다. 분자 간의 상호 인력이 작아 풍부한 탄성과 우수한 압축 영구 줄음률, 뛰어난 내한성 등의 특징을 나타낸다.실리콘 레진의 분자 구조는 고무의 가교가 진행되어감에 따라 분자의 자유도가 감소하고 신축성도 줄어들게 되면서 경도가 올라가게 된다. 이 가교 밀도를 극한으로 높인 것이 실리콘 레진이다. 실리콘 레진은 고무와 달리 직쇄 상 분자들이 나중에 가교하는 것이 아니고 가교하기 쉬운 구성단위를 초기에 선택하여 망상구조의 분자 구조를 갖는 것이다.실리콘의 특성은 낮은 표면장력, 비이온성 및 비극성, 소수성 및 발수성, 내열성 및 산화안정성, 저온 안정성, 가스투과성, 화학적 불활성, 난연성, 환경 친화성, 무독성 등을 들 수 있으며, 실리콘은 분자 구조상 무기적인 성질과 유기적인 성질을 동시에 갖는 독특한 양면성을 지니고 있어 각각의 특징으로 인해 활용도가 매우 넓다.실리콘의 구성 원자인 규소(Si)와 산소(O)는 전기음성도의 차이가 크기 때문에, 이온 결합에 가까우므로 에너지적으로 안정되어 열과 산화에 강하여 고온에서 사용되는 경우 안정적인 물성을 유지할 수 있다. 또한 가수분해 반응의 촉매로써 작용하는 물질이 있는 경우 고온의 수증기 등에 의하여 실리콘 분자가 저분자량 물질로 변하게 된다. 예를 들어, 실리콘 고무를 밀봉 상태에서 가열하거나 수증기 중에 놓아두면 연화되는 것을 볼 수 있다. 물리적 성질은 실리콘 오일의 분자 간의 인력이 작기 때문에 표면장력은 다른 액체에 비해 낮으며, 따라서 실리콘은 물체의 표면에 얇고 넓게 되려는 경향을 가진다. 또 실리콘 오일 및 고무는 고화점이 낮아 내한성이 우수하다. 이러한 물성은 다른 물질에 비해 산업에서 실용화하는데 훨씬 효과적이다. 또한 분자 간의 거리가 크므로 온도에 의한 영향을 적게 받아 온도 의존성이 낮으며, 기체 투과성이 크다. 그리고 실리콘은 표면장력이 낮아 표면의 발수성이 크며, 실리콘은 금속에 의한 친화력이 낮다. 따라서 실리콘 오일을 금속 간의 윤활유로 사용할 경우, 마찰 면의 압력이 높아지면 유막을 보존하지 못하기 때문에 실리콘 오일은 금속 간의 윤활제로서는 적용하기 어렵다.2. 자동차용 실리콘 응용 및 개발 동향자동차 친환경 경량화 시장은 고연비 부품 수요와 함께 지속적인 성장을 추구하고 있다. 특히 전기자동차와 자율주행 자동차의 연구가 활발히 진행되면서 에너지 밀도 향상, 전장 제품 사용 급증에 따른 전력 소모, 방열, 전자파 발생 등 많은 문제가 발생하고 있다.이러한 문제를 해결하기 위해 자동차 연구자들은 소재부터 제품까지 다양한 분야에서 연구를 진행하고 있다. 본 논고에서는 화학소재 중 실리콘 소재가 향후 자동차 산업에 어떤 기여를 할 수 있을지에 대해 논하고자 한다.실리콘 소재는 차량 내장 및 외장 부품에 광범위하게 사용되며, 자동차 및 기타 차량(예: 중장비 도로 및 오프로드 자동차 장비)의 다양한 부품 및 구성 요소에 사용되며, 실리콘은 경량화 및 배출 가스 감소에 많은 기여를 하고 있다고 보고되고 있다. 최근 전기자동차, 자율주행 자동차 개발이 활발히 진행되면서 더 많은 전력과 성능을 요구하는 차량 특성상 엔진에서 발생하는 열량은 증가하고 있으며, 고성능 자동차 응용 분야에 필요한 강도, 저항 및 내구성을 요구하고 있다. 실리콘 소재는 자동차 산업에 있어 고내열에서 작업 환경에 부품 보호 또는 외부 환경에 대응용으로 씰, 진동 댐퍼, 도체, 절연체 역할을 하고 있으며, 자동차의 수명을 연장할 수 있는 실리콘 접착제, 코팅용으로 사용되고 있다. 자동차 외부 환경인 비, 바람, 염수, 마모, 자외선 및 화학 물질 등 내후, 내 환경성을 확보하기 위해 자동차의 많은 부분에서 고분자 실리콘이 사용되고 있다.2.1. 자동차 산업과 실리콘  1) 자동차용 실리콘 시장자동차 실리콘의 시장 규모는 2018년에서 2023년까지 연평균 7.1%의 성장을 예상하고 있으며, 전기 부품 및 인테리어와 같은 고성장 응용 분야 자동차 산업에 사용되는 외장 부품 등 자동차 산업의 높은 성장은 자동차 실리콘 시장의 성장을 이끄는 핵심 요소로 자리매김할 것으로 기대된다.자동차 산업에서 자동차의 내구성과 효율성을 향상시키며, 경량 소재에 대한 수요가 증가함에 따라 자동차 실리콘 시장도 동반 성장할 것으로 예측하고 있다.2) 자동차에서 실리콘 역할자동차는 전기 전자 응용 분야의 수가 계속 증가하고 복잡해짐에 따라 성능 및 안정성 향상에 대한 요구가 지속적으로 증가하고 있다. 실제 자동차 운행 관련 환경 조건은 매우 가혹하다. 보닛 아래의 온도가 상승하면서 열 사이클은 응력과 구성 요소 고장 가능성을 유발할 수 있다.기계적 응력의 또 다른 원인은 엔진 및 도로 조건에서 발생하는 직접적인 진동으로 기인한다. 물과 습도는 지속적으로 엔진 내부와 주변에서 화학적 반응을 발생시킨다. 이러한 모든 요소들로 인해 자동차 산업에서 일하는 모든 전자 설계 엔지니어는 부품 보호를 위한 설계를 최우선으로 생각하고 있다.실리콘은 응용 분야에 따라 자동차에 적용되는 실리콘 내장, 외장, 엔진, 전기 및 기타 부문으로 자동차 전 분야에 걸쳐 사용되고 있다. 내장 및 외장용으로는 배기 행거, 에어백, 외장 트림 및 충격 흡수 장치 등이 있으며, 엔진 분야는 개스킷, 라디에이터 씰 및 여과 등에 적용되고 있다. 전기 관련 분야에는 점화 케이블, 배터리 씰 및 커넥터 등이 있다.특히, 실내 및 외장은 자동차 실리콘의 가장 큰 응용 분야로 추정되며 전기는 예측기간 동안 가장 빠르게 성장하는 분야로 예상되며, 플라스틱 및 코팅에서 자동차용 실리콘에 대한 수요 증가는 향후 이 응용 분야에서 시장을 주도할 것으로 예상된다.실리콘은 에어백, 엔진 개스킷, 헤드램프, 유압 베어링, 점화 케이블, 라디에이터 씰 및 호스, 충격흡수장치, 스파크 플러그 부츠 등 광범위한 자동차 부품에 사용되고 있으며, 실리콘의 쿠션 특성을 이용한 부품들로 카시트, 대시 보드, 베어링 및 보호 충격 흡수 등이 있다. 또한 EV 배터리 씰, 엔진 개스킷, 헤드램프 씰 및 충격 흡수 장치 등 다양한 자동차 부품에 적용 되고 있으며, 파워트레인 실링, 개스킷, 호스, 윈드실드 라이닝, 케이블, 점화 세트, 에어백 쿠션 코팅 및 기타 여러 주요 응용 분야에서 실리콘의 안정성의 특성을 이용하고 있다. 실리콘의 이형 코팅을 통해 타이어를 제조 금형에서 꺼내는 데 사용하기도 한다.자동차용 엔진 부품 분야에도 실리콘 소재가 적용되고 있다. 고온 및 저온 저항, 우수한 전기적 특성 및 높은 접착성을 이용하여 본딩 및 밀봉 재료에 RTV 실리콘 고무를 사용하고 있으며, 견고하고 물성이 우수한 특성을 이용하여 진동 댐퍼로 사용한다. 또한 공기, 연료, 오일, 캐빈, 브레이크 먼지, 조향, 냉각수, 오일 분리기 및 트랜스미션 필터 등 다양한 필터에도 사용하고 있다.전기분야에는 동력 전달, 댐핑, 절연, 점화 케이블 및 점화 플러그 부츠, 회전 전원에서 다른 장치로 속도 및 토크 변환을 제공하는 변속기, 전력 전송 시스템에서 사용되는 케이블의 안전성을 극대화하기 위해 실리콘 화합물들이 사용되고 있다.2.2. 전기자동차용 실리콘 방열 소재 하이브리드 자동차, 전기자동차 또는 연료전지 자동차 등의 핵심 부품을 보호하기 위해 실리콘 소재의 적용이 필요할 것이다.열, 냉기 및 습기 등에 의한 급격한 온도 변화, 진동 또는 오일 및 화학 물질과의 접촉과 같은 극한 환경 영향으로부터 차량을 보호하기 위해 실리콘 소재의 적용은 증가할 것으로 예상 된다.• EV MotorELASTOSIL®, SEMICOSIL®, SILRES® 및 WACKER SilGel® 사 실리콘 제품들은 하이브리드 및 대체 드라이브에 사용되어 효율적인 열 관리 및 기능 안전, 민감한 전자 장치의 안정적인 보호를 제공한다고 발표하였다.일반적인 특징은 수분, 환경, 화학 물질, 냉각수 및 유체로부터 엔진 구성 요소를 보호하고, 진동 댐핑은 -45°C부터 >180°C까지 안정적으로 유지한다. 내열성은 180°C~230°C 지속적인 부하에도 안정적이다. 넓은 온도 및 주파수 범위에서 장수명 및 전기 절연 성능을 발휘한다.실리콘 수지로 전기 코일(로터/고정자) 함침, 실리콘 엘라스토머로 코팅된 포팅 실리콘 유체로 능동 냉각, 실리콘 엘라스토머가 있는 정션 박스 및 커넥터 링을 포팅하여 전기연결 보호, 강한 실리콘 접착제로 영구자석결합 등의 전기모터 성능과 내구성을 향상시키는 재료로 응용될 수 있다.• Batteries 현재 리튬 이온 배터리 기술로 구동되는 EV는 출력 밀도 측면에서 기존 차량 EV를 더 자주 재충전해야 한다. 각 재충전 주기는 배터리의 전체 커패시턴스를 감소시켜 배터리 수명을 단축시킨다. 또한, 재충전은 배터리 셀의 물리적 치수의 팽창으로 나타나는 내부 화학 변화를 일으켜, 내부 배터리 셀 및 부품의 박리 또는 심지어 배터리 팩의 변형을 야기할 수 있다. 이는 배터리 수명을 단축시키며 열악한 상황에서는 열 폭주로 이어질 수 있다. • Electric Vehicles (EV) Silicone Foams현재 자동차에 제공되는 다양하고 성장하는 인포테인먼트, 내비게이션 및 전자 장치는 차량에 많은 전기 수요가 있음을 의미한다. 결과적으로 EV 배터리가 실제로 널리 보급되려면 EV 배터리가 더 많은 전력, 더 많은 사이클 및 더 긴 수명을 제공해야 한다. 리튬 이온(Li-ion) 배터리 팩은 뛰어난 전력 밀도와 충전 효율로 인해 EV 산업의 주요 전원으로 적용되고 있다. 그러나 이 배터리는 수명은 운행 시간이 길고, 자동차 운행 환경이 까다로워질수록 악화된다.특히 배터리 수명을 단축시키는 요인으로 배터리가 충·방전하는 동안 적당한 양의 압력이 가해져야 최적의 효율을 갖게 되지만, 장시간 충·방전을 통하여 박리가 발생하면 배터리 수명이 단축되는 현상이 발생한다. 이러한 현상을 방지하기 위해 유전체 폼이 적용되고 있다. 유전체 폼(Dielectric foam)은 배터리 셀의 치수 변화 등을 제어함으로 셀 패키지에 충분한 압력을 전달하여 사고를 방지할 수 있다. 실리콘 기반 폼의 성능은 배터리 수명보다 오래 지속되고 대부분의 다른 고무보다 훨씬 넓은 발포체의 작동 온도 범위를 가지고 있다.• Electric Vehicles (EV) Cable $ Connector Seals전기자동차용 케이블과 커넥터용 실은 화학성, 완벽한 절연성 및 열부하에 대한 저항력이 필요하며, 안전하고 안정적으로 전기를 공급해야 하는 특성이 있다. 실리콘 고무 경우 물리적, 기계적 및 절연 특성을 결합하여 안정적인 기능을 발휘할 수 있다.ELASTOSIL® 실리콘 고무는 차량의 전기 회로에서 탁월한 성능을 발휘한다고 소개하고 있다.• Electric control Unite(ECU)현재 자동차의 편안함, 안전 및 연료 효율 관리 등 대부분 전자제어 장치의 품질에 의해 성능이 결정된다. 고품질 실리콘 엘라스토머는 전자 제어 및 안전 시스템이 장기적으로 효율적이고 안전하게 작동하도록 한다.3. 결언실리콘 소재는 자동차 산업에 있어 고내열에서 작업 환경에 부품 보호 또는 외부 환경에 대응용으로 씰, 진동 댐퍼, 도체, 절연체 역할을 하고 있으며, 자동차의 수명을 연장시킬 수 있는 실리콘 접착제, 코팅용으로 사용되고 있다.자동차 외부 환경인 비, 바람, 염수, 마모, 자외선 등에 의한 급격한 온도 변화 및 화학 물질과의 접촉 등 내후성, 극한 환경 영향으로부터 차량을 보호하기 위해 실리콘 소재의 적용은 증가할 것으로 예상된다.전기 부품 및 인테리어와 같은 고성장 응용 분야 자동차 산업에 사용되는 외장 부품 등 자동차 산업의 높은 성장은 자동차 실리콘 시장의 성장을 이끄는 핵심 요소로 자리매김할 것으로 기대된다.하이브리드 자동차, 전기자동차 또는 연료전지 자동차 등의 핵심 부품을 보호하기 위해 실리콘 소재의 적용이 필요할 것이다.전기자동차용 케이블, 커넥터, Battery, ECU 등 많은 부품 등이 화학성, 절연성 및 열부하에 대한 저항력이 필요하며, 안전하고 안정적으로 전기를 공급해야 하는 특성이 있다. 실리콘 고무 경우 물리적, 기계적 및 절연 특성을 결합하여 안정적인 기능을 발휘 할 수 있을 것으로 기대된다.자동차 산업에서 자동차의 내구성과 효율성을 향상시키며 경량 소재에 대한 수요가 증가함에 따라 자동차 실리콘 시장도 동반 성장할 것으로 예측하고 있다.
편집부 2022-08-22
기사제목
- 용액공정 기반 대면적 태양전지의 성능저하를 해결할 고분자 첨가물 개발- 향후 프린팅 형태로 바를 수 있는 태양전지 기술 상용화 기대   태양전지는 대표적인 청정 에너지원이다. 특히 3세대 태양전지에 속하는 유기 태양전지는 프린팅 형태로 제작 후 건물의 외벽이나 유리창에 붙여 활용할 수 있어서 도심 태양광 발전의 핵심기술로 기대를 모으고 있다. 하지만 태양 빛을 흡수해 이를 전력으로 전환하는 광활성 영역이 0.1㎠ 이하의 매우 작은 크기에 머물러 있고, 실질적으로 전력 수급이 가능한 면적인 수 ㎡로 확장할 때 발생하는 성능감소와 재현성 문제는 상용화에 걸림돌로 여겨지고 있다.한국과학기술연구원(KIST, 원장 윤석진) 차세대태양전지연구센터 손해정 박사팀은 유기 태양전지의 대면적화에서 발생하는 성능감소 요인을 밝히고, 신규 광활성층 고분자 첨가제 소재를 개발해 유기 태양전지 대면적화 기술을 개발했다고 밝혔다.   삼성분계 광 활성층을 도입한 고효율 고 안정성 유기 태양전지 모듈 사진(좌) 및 관련 성능   연구팀은 유기 태양전지 내 광활성층의 조성 형태와 유기 태양전지의 제작과정 중 용액공정에 주목했다. 실험실 연구단계에서 주로 활용하는 용액공정인 스핀 코팅 방법은 기판이 빠르게 회전하면서 용매가 빠르게 증발하기 때문에 광활성층의 균일한 혼합형태를 얻을 수 있다. 하지만, 산업용으로 활용 가능한 대면적 연속 용액공정은 태양전지 소재 용액의 용매 증발속도가 느려 태양전지 소재의 응집 현상이 나타나 태양전지 성능이 저하되는 원인으로 작용했다.   고효율 고 안정성 유기 태앙전지   연구진은 이를 해결하기 위해 응집화가 잘 일어나는 소재와 상호작용해 응집을 막을 수 있는 고분자 첨가제를 개발하였다. 결과적으로 고분자 첨가제가 포함된 삼성분계 광활성층을 구현하였으며 광활성층 내 응집 현상을 방지하고 나노 단위에서 구조 제어가 가능해져 태양전지 성능 향상과 동시에 태양전지 가동 중 빛에 의해 상승하는 온도에 대한 안정성을 확보했다. 이를 통해 기존에 대표적으로 쓰이는 이성분계소재와 비교 했을 때 보다 성능이 23.5% 이상 향상된 14.7%의 태양전지 모듈 효율을 달성하였으며, 85℃ 가열 환경에서도 1,000시간 동안 초기효율의 84% 이상을 유지함으로써 효율과 안정성을 동시에 입증했다. 유기 태양전지(OPV: Organic Photovoltaics): 유기 반도체 소재를 광 활성층으로 사용하는 태양전지 (1세대 태양전지: 결정질 실리콘 태양전지, 2세대 태양전지: 실리콘 박막, CIGS 및 CdTe 박막 태양전지) 세 종류의 유기 반도체 소재를 섞어 구성한 광 활성층 두 종류의 유기 반도체 소재를 섞어 구성한 광 활성층   KIST 손해정 박사는 “고품질의 대면적 용액공정이 가능한 태양전지 소재의 핵심 원리를 제안함으로써 유기 태양전지 상용화에 가까워졌다”고 말하며, “후속 연구를 통해 상용화가 이루어지면 건물 외벽이나 자동차 등에 쉽게 적용해 전기를 자급자족하는 친환경 발전이 가능하고, 모바일 및 사물인터넷 기기의 전력 공급원으로 활용될 수 있을 것”이라고 기대했다.본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요 사업과 연구재단 소재혁신선도사업으로 수행되었으며, 연구 결과는 에너지 분야의 국제학술지 ‘Nano Energy’(IF: 17.881, JCR 분야 상위 4.641%) 최신호에 게재되었다.* 논문명: ‘Important role of alloyed polymer acceptor for high efficiency and stable large-area organic photovoltaics’ - 제1저자: 한국과학기술연구원 박성민 박사후연구원 - 교신저자: 한국과학기술연구원 손해정 책임연구원박성민 박사(제1저자) ○ 소속: 한국과학기술연구원 청정신기술연구본부 차세대태양전지연구센터 박사후연구원○ 전화: 02-958-5370○ e-mail: smpark@kist.re.kr 손해정 박사(교신저자)   ○ 소속: 한국과학기술연구원 청정신기술연구본부 차세대태양전지연구센터 책임연구원○ 전화: 02-958-5320○ e-mail: hjson@kist.re.kr  
편집부 2022-08-11
기사제목
- 저비용·친환경 전해도금 공정으로 아연금속 음극 성장 및 최적화 성공- ‘폭발 위험’ 높은 리튬기반 에너지 저장장치를 수계아연전지로 대체 기대   최근 대부분의 ESS는 이차전지 중 기술 성숙도가 가장 높은 리튬이온전지를 채택하고 있다. 하지만 화재의 위험성으로 인해 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받고 있다. 국제적인 원자재 공급 불안정성 역시 큰 문제로 대두되고 있다. 반면 수계아연전지는 물을 전해질로 사용해 배터리 발화가 근본적으로 차단되며 원재료인 아연의 가격도 리튬의 1/16에 불과하다.한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 수계아연전지 상용화의 열쇠인 ‘고밀도 아연금속 음극’ 제조기술 개발에 성공했다고 밝혔다. 이번 제조기술은 특히 저비용·친환경 용액을 이용하여 쉽고 간단한 전해도금 공정만으로도 높은 에너지밀도와 긴 수명의 아연금속 음극을 만들 수 있어 수계아연전지 대량 생산의 기폭제가 될 것으로 전망되고 있다.   기존 수계 전해액에서 불규칙하게 생성되어 부식 반응을 유발하는 아연 입자와 달리 DES 용액에서 성장시킨 아연은 빽빽하고 균일하여 충·방전 후에도 안정적으로 구조를 유지한다.   이론적으로 수계아연전지는 다가 이온을 활용하여 이온 하나당 두 개의 전자를 이용하기 때문에 알칼리 금속 이온 대비 부피당 에너지밀도 측면에서도 유리하다. 전지를 제작할 때 음극으로 사용되는 아연금속의 용량이 양극의 2배만 넘지 않으면 현재 상용화된 리튬이온전지에 버금가는 에너지밀도의 구현이 가능하다. 심지어 아연금속의 용량이 양극의 5배에 달해도 부피당 에너지밀도 측면에서 차세대 배터리로 주목받는 소듐이온전지와 비슷할 만큼 경쟁력이 뛰어나다. 아연금속 전해도금 후의 표면 및 단면 미세구조   하지만, 아연금속 음극은 전지 구동 시 나노입자가 불규칙하게 성장하고 부식이 일어나 이차전지의 에너지밀도와 수명을 지속적으로 저하시킨다는 문제를 안고 있었다. 음극 내 낮은 아연금속 입자 밀도와 넓은 표면적이 전해액과의 부식 반응을 가속화해 활성 아연금속과 전해액을 고갈시키는 것이다. 기존의 연구들은 이런 수명의 한계를 보완하기 위해 일반적으로 필요보다 20배 이상 많은 양의 두꺼운 아연금속을 사용하는데, 이는 역설적으로 수계아연전지의 최대 강점인 에너지밀도와 가격 경쟁력의 저하를 불러올 수밖에 없었다.   KIST 이민아 박사팀 연구진은 (좌측) 염화콜린(ChCl)과 (가운데) 요소(UREA)를 혼합하여 (우측) 친환경 공융용매(DES)를 제작했다.   이에 따라 KIST 이민아 박사팀은 수계아연전지의 에너지밀도와 수명 저하를 유발하는 부반응을 줄이기 위해 아연금속 음극의 미세구조를 제어했다. 이를 통해 상온에서 간단하게 합성할 수 있는 DES(Deep eutectic solvent, 깊은공융용매) 용액을 제조했다. 제조한 DES 용액은 콜린클로라이드(Choline chloride, ChCl)와 요소(Urea)를 1:2의 몰비로 혼합하여 녹는점이 12℃인 액체 상태의 복합체가 되는 대표적인 DES 물질로 알려져 있다. 연구진은 DES 내에서 아연과 구리 집전체 사이에 친아연성 구리-아연 합금층이 자발적으로 형성되며 고밀도의 아연 입자를 성장시킨다는 사실을 확인했다. 연구진은 이를 활용해 저비용·친환경인 DES 용액에서 아연금속을 조밀하고 균일하게 성장시키는 전해도금 공정을 개발하는 데 성공했다.   KIST 권민형 연구원이 공융용매를 활용하여 제작한 고밀도의 아연 음극과 이를 적용하여 획기적으로 성능이 개선된 수계아연전지(파우치형)를 살펴보고 있다.   이렇게 제조한 아연금속 음극을 수계아연전지 시스템에 적용한 결과, 부식 반응이 효과적으로 억제돼 7,000회 이상의 반복적인 충‧방전 이후에도 70% 이상의 용량을 유지하는 것으로 나타났다. 이는 얇은 아연을 활용한 기존의 유사 연구들 중에 가장 뛰어난 결과이며 상용 리튬이온 이차전지의 충‧방전 수명(1,000~2,000회)을 크게 상회하는 수치이다.   차세대 수계아연전지용 고밀도 음극 제조기술 개발에 성공한 KIST 에너지저장연구센터 이민아 박사(좌, 교신저자)와 권민형 연구원(우, 제1저자)   KIST 이민아 박사는 “신재생에너지 보급과 확대의 가장 큰 걸림돌인 ESS의 화재 안전성을 단번에 해결할 수 있는 수계아연전지의 상용화 핵심 기술을 개발하게 됐다”라며, “이번 고밀도 아연 음극 제조기술은 특히 경제적이고 친환경적인 DES 용액과 이미 산업 전반에서 널리 쓰이는 전해도금 공정이 결합돼 수계아연전지 대량 생산의 길을 열게 될 것으로 기대한다”라고 밝혔다,본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노·미래소재원천기술개발사업, 개인연구사업(중견연구) 및 KIST 주요 사업을 통해 수행되었으며, 연구 결과는 에너지 및 환경과학 분야의 세계적 권위지 ‘Energy & Environmental Science’ (IF:38.532, JCR 분야 상위 0.182%) 최신 온라인판에 게재되었다.* 논문명: Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors - 제 1저자: 한국과학기술연구원 권민형 학생연구원 - 교신저자: 한국과학기술연구원 이민아 선임연구원 권민형 학생연구원(제1저자)○ 소속: 한국과학기술연구원 청정신기술연구본부에너지저장연구센터 학생연구원 고려대학교 화공생명공학과○ 전화: 02-958-5808○ e-mail: kwon951013@kist.re.kr이민아 박사(교신저자)○ 소속: 한국과학기술연구원 청정신기술연구소에너지저장연구센터 선임연구원○ 전화: 02-958-5297○ e-mail: minahlee@kist.re.kr        
편집부 2022-08-11
기사제목
- KIST‧POSTECH 연구팀, LOHC 탈수소화용 나노촉매 개발- 수소 추출공정 중 발생하는 부산물 줄여 수입 실증에 필요한 핵심기술 확보   지난해 11월 정부에서 발표한 제1차 수소경제 이행 기본 계획에 따르면, 우리나라는 2030년까지 국내 수소 공급량을 390만 톤으로 늘리는 것을 목표로 하고 있지만, 이 중 절반 이상인 196만 톤을 해외에서 생산된 수소로 수입하여 공급할 계획이다. 그런데, 수소는 압축시켜 선박을 이용해 국내로 이송하기 때문에 한 번에 수입할 수 있는 수소량이 제한적이라는 문제가 있다. 최근 대용량의 수소를 저장 후 상온·상압에서 운송할 수 있는 액상유기수소운반체(LOHC, Liquid Organic Hydrogen Carriers) 기술이 주목받는 이유다.한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 손현태 박사와 포항공과대학교(POSTECH, 총장 김무환) 화학공학과 윤창원 교수 공동연구팀은 LOHC의 수소 추출공정에 필요한 다공성 실리카 기반 나노촉매를 개발했다고 밝혔다. 개발된 촉매는 수소 추출공정에서 발생하는 부산물의 양을 획기적으로 줄임과 동시에 추출 속도도 빨라서 향후 대규모 수소운송 실증을 가능케 하는 핵심기술이 될 것으로 기대된다. 다공성 실리카: 고도로 발달 된 중형의 규칙적인 기공 구조를 갖는 구조체형 실리카(SiO2)   LOHC는 유기화합물을 수소 저장, 운송 및 방출을 위한 매개 물질로 사용하여 대용량의 수소를 이송하는 기술이다. 이는 경유, 휘발유 등과 비슷한 성질을 가지고 있어 초기 투자 비용 없이 기존의 석유화학 시설 인프라를 그대로 활용할 수 있다는 장점이 있고, 암모니아를 이용한 액체 기반 수송과는 다르게 수소 저장 및 추출 사이클을 반복하는 것이 가능해 비용을 줄일 수도 있다. 하지만, 수소 추출공정 중 소량 발생하는 부분 탈수 소화 물질(부산물)이 저장-추출 사이클의 반복 과정에서 누적되어 수소 저장량의 감소와 함께 전체 공정의 효율을 떨어뜨리는 한편, 고온에서 진행되는 수소 추출공정에서 촉매의 안정성이 낮아져 수소생산 속도 또한 낮아진다는 문제점이 있었다.   KIST-POSTECH 공동연구진이 개발한 LOHC 탈수소화용 촉매 구조 모식도   공동연구팀이 개발한 촉매는 3차원 중형 다공성 실리카(Ordered mesoporous silica, KIT-6)에 1-2 나노미터(1nm: 10억분의 1m) 크기의 백금(Pt) 금속이 고르게 퍼져있는 형태로 상용 촉매 Pt/Al2O3보다 약 2.2배의 탈수소화 성능을 기록하였으며, 액상 생성물 분포에서도 바이페닐 기반 LOHC 탈수소화 부산물이 상용 촉매 대비 1/20 수준으로 발생함을 확인하였다. 뿐만 아니라 나노 백금 금속 입자가 3차원 다공성 실리카 지지체의 각 기공 안에 존재하기 때문에 높은 반응 온도에서도 안정적이며, 장시간 사용해도 촉매 성능이 유지된다는 것을 확인했다. KIT-6: 3차원 중형 다공성 실리카(Ordered mesoporous silica)의 일종 백금 금속: 원자 번호 78번의 금속, 무겁고, 연성이 있는 값비싼 귀금속으로 10족에 속하는 전이 금속임.   KIST 손현태 박사는 “본 연구는 촉매의 기공 크기 및 바이페닐 기반 LOHC 반응물의 체류 시간을 조절하여 수소 선택도와 생산 속도를 높인 경우”라며, “향후 추가적인 연구를 통해 본 촉매를 바이페닐 기반 외 다양한 LOHC 추출공정에 적용해 보는 것이 목표”라고 말했다. POSTECH 윤창원 교수는 “2019년에 출범한 국내 LOHC 원천기술개발 연구단은 이미 LOHC와 관련된 촉매, 반응기, 공정 및 시스템 구축 기술을 확보하였으며, 앞으로 연구단에서 얻은 결과를 활용하여 해외에서 대용량의 수소를 LOHC로 들여오기 위한 시스템 스케일 업 연구개발이 필요하다”라고 말했다.본 연구는 과학기술정보통신부(장관 이종호) 지원으로, 한국연구재단 “수소에너지혁신기술개발사업”으로 수행되었으며, 이번 연구 결과는 에너지 환경 분야 저명 국제 학술지인 ‘Applied Catalysis B-Environmental’ (IF: 19.503, JCR 분야 상위 0.926%) 최신 호에 게재되었다.* 논문명: Dehydrogenation of homocyclic liquid organic hydrogen carriers (LOHCs) over Pt supported on an ordered pore structure of 3-D cubic mesoporous KIT-6 silica - 제1저자: 한국과학기술연구원 안창일 박사후연구원 - 교신저자: 한국과학기술연구원 손현태 선임연구원 - 교신저자: 포항공과대학교(POSTECH) 화학공학과 윤창원 교수안창일 박사(제1저자) ○ 소속: 한국과학기술연구원 청정신기술연구본부 수소·연료전지연구센터 박사후 연구원○ 전화: 010-5386-8983○ e-mail: ciahn@kist.re.kr손현태 박사(교신저자)○ 소속: 한국과학기술연구원 청정신기술연구본부 수소·연료전지연구센터 선임연구원○ 전화: 02-958-5241○ e-mail: sohn@kist.re.kr윤창원 박사(교신저자)○ 소속: 포항공과대학교 (POSTECH)  화학공학과 교수○ 전화: 054-279-6881○ e-mail: cwyoon@postech.ac.kr    
편집부 2022-08-11
기사제목
- KIST, 몽골과학아카데미와 MOU 연장 체결로 상호보완적 연구 협력 강화- 몽골 과학기술계 공무원과 연구자 초청 역량 강화 프로그램 개최   한국과학기술연구원(KIST, 원장 윤석진)은 2022년 6월 10일(금)부터 16일(목)까지 7일간, KIST 본원 및 강릉분원에서 몽골 교육과학부 공무원과 연구소 소장급 총 13명을 초청하여 ‘몽골 과학기술 역량 강화 프로그램(2022 Mongolia S&T Capacity Building Program)’을 개최하고, 몽골과학아카데미(MAS, 원장 Regdel Duger)와의 협력 협정을 연장 체결했다.     이번 초청 연수프로그램은 KIST의 설립 및 한국의 발전 경험을 공유하고 몽골에 적용할 수 있는 실천계획을 수립하는데 목표를 두고 있다. KIST는 지난 2015년부터 개발도상국 과학기술부처 공무원 및 연구자를 초청하여 과학기술 역량 강화 프로그램을 운영해왔다. 이를 통해 개발도상국의 과학기술 혁신 역량을 함양하여 지속 가능한 목표(SDGs)를 달성하는데 기여하는 한편, KIST의 연구 협력 네트워크를 확대·강화하고 있다. KIST와 MAS는 2001년도에 체결한 협력 협정을 연장 체결하여 KIST 연구 경험과 몽골의 천연자원을 결합한 상호보완적 연구 협력을 강화할 예정이다. KIST 윤석진 원장은 “지난 2002년부터 MAS와 공동으로 한몽과학기술협력센터를 운영하여, 활발한 연구 협력을 추진했다. 앞으로도 천연물 분야 등 과학기술 협력과 더불어 대한민국의 과학기술 분야 발전의 경험을 공유하겠다”라고 밝혔다.이번 협력 협정 체결을 위하여 방한한 Regdel Duger(뚜게르 렉델) MAS 원장은 “몽골의 풍부한 천연자원과 한국의 연구역량을 결합하여 상호보완적인 연구 협력을 강화하는 것이 이번 협력 협정체결의 취지” 라고 설명하면서 향후 협력 성과에 대한 기대를 밝혔다.    
편집부 2022-08-11
기사제목
1. 서론전 세계적으로 에너지의 효율적인 관리 기술을 통한 부가가치 창출에 관한 관심이 급증하고 있으며 열 손실을 최소화하는 기술에 관한 관심이 높아지고 있다. 건축물 구조에서 에너지 손실이 가장 많은 유리창은 하절기의 온도상승, 동절기의 에너지 손실과 유해 자외선 유입을 차단하는 기능이 충분히 발휘되어야 하는 등의 에너지 절감 효과가 필요하다. 이런 에너지 절감 필름은 친환경 정책 지향 산업이라 할 수 있으며, 에너지 절감 스마트 필름은 외부에서 유입되는 빛의 투과도를 조절하여 소비자에게 사생활 보호, 쾌적한 환경을 제공할 수 있는 수동/능동 제어 기술로 간편한 조작과 저전력으로 다양한 고급 편의 기능을 부여할 수 있어 미래형 기술로 주목을 받고 있다. 기존 스마트 윈도우 기술은 높은 제조 단가와 무거운 무게, 곡면 시공의 한계 등 단점들이 있기 때문에 아직 상용화가 확대되지 못하고 있다. 또한, 중소 중견기업에서 기술개발에 투자하기 어렵다는 점이 여전히 넘어야 할 산으로 남아있는 실정이다.특히, 기존 투명전극 소재로 상용화에 성공한 ITO(Indium Tin Oxide)의 경우, 금속 기반의 소재로 유연 전자제품 적용에 적합하지 않으며, 이러한 기술적 문제점들을 해결하기 위해 유리가 아닌 PET와 같은 유연 필름 기재를 이용하고 우수한 내구성을 갖춘 스마트 필름 개발이 요구되고 있다. 이와 더불어 식물 생장에 요구되는 가시광선 영역의 투과도를 선택적으로 제어하거나 군수 분야의 특수목적용으로 IR 스텔스 기능을 부여한다면 세계 스마트 필름 시장에서 대중화를 선도하고 기술적인 측면에서 우위를 확보할 수 있다. 유연한 투명 에너지 절감 스마트 필름 기술개발에는 고분자 기반의 유연 소재 원천기술 확보, 전파장 영역의 투과/차단 특성 제어 기술 등이 필수적인 중요기술로서 요구된다.최근 저탄소 녹색성장 계획이나 제로 에너지 빌딩 정책과 함께 정부에서도 에너지를 효율적으로 관리하기 위한 주요 제도 및 대책을 실행하고 있으며, 고효율 건물 보급 및 확산을 위해 ‘건축물 에너지효율등급 인증제도’, ‘건축물 에너지절약 계획서 검토’, ‘친 환경주택 성능 평가 제도’ 등 정부 차원에서 스마트 윈도우 설치를 권장하고 있다. 또한, VOC 규제에 대응하기 위해서는 친환경 수계 기반의 소재 합성공정을 기반 기술로 하여 투명전극 및 적외선 차단 특성 등 여러 가지 기능성을 부여하고 모든 공정을 수계 습식공정으로 적용하는 연구가 활발하다(그림 1). 수분산 형태의 공액 고분자 소재는 간편한 습식공정으로 대면적 코팅 필름 제조가 가능하고 Dip, Flow, Spray 방식의 코팅으로 다양한 3D 굴곡 및 유연 기재에 적용이 가능하다. 특히, 가시광선 영역의 빛을 투과하는 특성을 극대화하여 유연 스마트 필름의 투명전극 소재, 농업용 열 차단 필름, 특수목적용 IR 스텔스 필름 등으로 활용이 기대된다. 이러한 응용 제품들은 냉난방비를 절약하여 에너지 절감 효과를 가지기 때문에 요즘 이슈화 되고 있는 환경 문제 등에 대해 대응하기 적절하다.2. 공액 고분자 나노입자 소재2.1. 투명전극 소재능동형 스마트 필름에서 투명전극 소재는 필수적으로 요구되는 핵심 소재로서 기존 시장에서는 현재까지 ITO가 대부분 제품에 적용되고 있다. 최근 폴더블 디스플레이 또는 롤러블 전자제품이 각광을 받기 시작함에 따라 ITO를 대체할 수 있는 새로운 투명전극 소재가 요구되는 상황이다. 2018년 이후로 세계 투명전도체 전체 시장은 점차 증가하지만 이에 반해 ITO 단독 시장 규모는 점차 감소하는 경향을 보인다(그림 2). 따라서 ITO 대체 유연 투명전극 소재 개발이 절실히 필요하며 제조 단가, 공정성, 유연성 등을 고려하였을 때, 전도성 고분자 소재가 차세대 투명전극 소재로 기대된다. 2010년 전, 후로 전도성 고분자 소재에 관한 많은 연구가 진행되었지만, 독일 Heraeus 기업의 독점을 통한 소재 공급으로 국내에서는 전도성 고분자 기반 투명전극 소재 상용화에 성공한 기업은 전무한 상황이다. 몇몇 국내 기업에서 대전 방지 특성을 갖는 전도성 고분자 제품을 출시하였으나, 기술에 대한 차별화가 아닌 단가 경쟁으로 미래 신사업 분야 창출이나 국산화 기술력 확보는 힘든 상황이다. 현재 ITO 대비 가시광선 영역에서의 낮은 투과도와 전기전도도가 이슈로 남아있는 상황이지만 전도성 고분자 소재가 갖는 기본적인 전기적 특성 외에 적외선 영역의 흡수 특성 등 차별점을 부각시켜 적합한 분야에 적용한다면 충분한 경쟁력을 확보할 수 있을 것으로 예상된다.2.2. 열 차단 소재모든 물체는 절대 0도 이상에서 열을 발산하는데 에너지 절감을 위해서는 빛의 전 영역 파장 범위에 대해 목적에 따라 투과/차단 특성을 제어하는 것이 필요하다(그림 3). 특히, 식물 생장이나 관측자의 시인성과 같이 투명성이 요구되는 분야에서는 가시광선 영역의 투과도를 극대화시키고 자외선이나 근적외선 영역의 빛은 선택적으로 차단하여 열 차단 효율을 향상시키는 것이 중요하다. 기존의 열 차단 소재는 CTO(Cesium Tungsten Oxide), ATO(Antimony Tin Oxide)와 같이 Oxide 계열의 소재가 주로 사용되었으며 Low-E 윈도우의 경우, Ag와 같은 금속 소재의 증착을 통해 다층 구조로 제조되고 있는 상황이다. CTO의 경우, 소재 자체의 원천 특허를 해외 기업에서 보유하고 있고 광학용으로 적용 시 헤이즈(haze)와 같은 시인성 저하 문제가 있으며 MEK 또는 알코올과 같은 유기 용매를 기반으로 제조되기 때문에 환경적인 측면에서도 이슈가 존재하는 상황이다. 따라서 이러한 광학적인 부분에 대한 개선과 친환경 부분의 문제점을 해결할 수 있으면서 동시에 제조 단가를 절감할 수 있는 새로운 열 차단 소재 개발이 필요한 상황이다.3. 기술개발 현황3.1. 스마트 필름 개발 동향스마트 필름은 채광 및 조명 제어, 김 서림 방지 등의 기능을 갖춘 소재 기반의 복합 제어 기술을 응용하여 자동차, 건축, 농업 분야 등에서 전력 사용량 및 에너지 절감 효과를 가져오는 실질적인 기술이다. 스마트 필름의 개발 이전에 유리 기판을 사용하는 스마트 윈도우가 개발되었으나 굴곡 면과 같은 다양한 형태의 기재나 플렉서블한 형태의 제품 수요가 증가하며 PET, PC 필름과 같은 투명 유연 기재를 기반으로 한 스마트 필름 제품으로 개발 방향이 전환되고 있는 추세이며, 경제 산업적인 측면에서도 높은 부가가치가 예상된다. 투명전극 필름을 전극으로 이용한 플렉서블 스마트 필름은 여름철에는 외부로부터 들어오는 태양에너지를 줄이고 겨울철에는 외부로 방출되는 내부의 에너지를 감소시킴으로써 냉난방 에너지를 줄일 수 있다.능동형 스마트 윈도우 기술을 좀 더 자세히 설명하면 다음과 같다(표 1).3.1.1. PDLC 사생활 보호필름 PDLC(Polymer Dispersed Liquid Crystal)란, 마이크론 크기의 액정 입자(droplets)들이 고분자 매트릭스 내에 고르게 분산되어 있는 구조를 지닌 고분자 분산 액정 복합체가 투명전극에 형성된 전기장에 의해 입자들이 규칙적으로 배향되고 굴절률의 일치를 유도하여 투과율을 조절하는 기술이다. 응답속도는 빠른 대신 전력 소모가 크다는 단점이 있다. PDLC는 에너지 효율 및 사생활 보호 기능, 별도 스크린이 필요 없는 영상 송출용 광고판 역할 등 관련 제품 수요가 늘어남에 따라 관련 기술에 관한 관심이 꾸준히 증가하고 있다. 일반적으로 PDLC는 고분자 매트릭스와 액정, 기판, 투명전극으로 구성된다. 투명전극으로는 ITO(Indium Tin Oxide)가 널리 사용되고 있으나, 수요 급증에 따른 가격 상승과 높은 제조 비용, 그리고 유연하지 못한 성질 등으로 인해 그 사용에 한계가 있다. 이런 단점을 갖는 ITO를 대체하기 위해 새로운 소재를 도입하고자 하는 연구가 꾸준히 보고되고 있으며, 최근 유기 전극 소재를 사용하기 위한 연구들이 활발히 진행되고 있다(그림 4). 대표적인 예로는 PDLC 셀의 투명전극 소재로, 전도성 고분자인 PEDOT:PSS를 사용하였으며 가시광선 영역에서의 높은 투과도와 낮은 전기적 저항을 띄는 특성으로 인해 빠른 응답속도와 뛰어난 투과율 변화를 갖춘 PDLC 셀을 제작하고 있다. 특히, 투명전극 소재인 전도성 고분자의 용액 공정이 가능한 특징으로 인해 대면적 및 In-line 공정으로 PDLC 셀의 제작이 가능함을 입증하였고, ITO 대비 반복적인 굽힘에 대한 저항 변화율이 낮아 스마트 필름으로의 응용 가능성을 넓혀주었다.현재 PDLC 기술을 응용한 제품 개발을 활발히 진행하고 있는 국외 기업으로는 미국의 윈도우 필름 전문기업인 ‘레이노’가 있으며, PDLC 스마트 필름뿐만 아니라 단열 기능을 갖춘 필름 제품도 생산하고 있다.국내 기업으로는 ‘디아이(주)’가 무결점 PDLC를 생산하여 스마트 윈도우 필름, 프로젝션 스크린, 자동차 선루프 등에 응용하고 있다. ‘스마트 필름 PDLC 그룹(주)’에서는 스마트 윈도우 필름용 외에도 스마트 사물함, 스마트 자동문 등 다양한 상용 제품으로의 응용 개발을 진행하고 있다.3.1.2. 전기변색 스마트 필름Electro chromic device(ECD)는 전극 물질에 전기화학적으로 산화 또는 환원반응을 일으킬 때 가역적으로 색 변화가 일어나는 현상을 기반으로 제작된 전자 소자이다. ECD의 응용 분야로는 에너지 절감형 스마트 윈도우, 정보 표시 디스플레이, 스마트 선글라스 등이 있다. 산화 및 환원반응에 의한 색 변화를 수반하는 물질은 금속 소재, 고분자 소재, 단분자 소재 등이 연구되고 있으며 각 소재를 기판상에 균일하게 코팅하여 적층 구조를 형성시켜 ECD를 제작하게 된다. 기본적인 ECD의 구성은 기판, 투명전극 소재, 산화 변색 물질, 전해질, 환원 변색 물질, 투명전극 소재, 기판의 총 5층의 구조로 이루어져 있다(그림 5). 많은 연구개발의 경우를 살펴보면, 제조과정은 유리 기판 소재 한쪽 면에 투명전극을 증착한 후에 각각의 상/하판에 산화 변색 물질과 환원 변색 물질 박막을 도포하는 공정으로 이루어진다. 산화/환원되는 물질의 종류에 따라 다양한 색을 구현할 수 있으며, 산화/환원반응이 동시에 이루어지기 때문에 양쪽 전극 모두를 사용함으로써 복합구조의 색을 구현할 수도 있다.특히, ECD 관련 최근 연구 동향을 살펴보면, 플렉서블한 기재 및 웨어러블 특성의 소자 등 다양한 형태의 기재를 기반으로 한 제품 개발이 이루어지고 있다. 대표적인 전기변색 물질 중 금속 소재인 텅스텐 옥사이드(WOx)의 경우 플렉서블한 ITO 필름 기재상에 Sol-gel 코팅 또는 스퍼터링 증착을 통해 박막을 형성하는 시스템을 사용한다. 다른 예로는 전기변색 특성을 띠는 전도성 고분자 용액을 플렉서블한 기재상에 코팅하여 전기변색 소자를 제작하는 시스템이 활발히 연구되고 있다. 대표적인 예로는 환원 변색 소재인 PEDOT:PSS가 있으며, 투명전극과 전기변색 역할을 하나의 층에서 동시에 수행함으로 계면에서 전력 소모가 감소하기 때문에 저전력으로 원활한 구동이 가능하다는 장점이 있다. 이러한 전기변색 기술과 전기변색용 소재 개발 연구를 기반으로 최근 가장 주목받고 있는 응용 분야는 건축(주거용, 상업용 빌딩) 및 수송(자동차, 비행기, 선박 등) 부문이 있으며, 그 외에도 투과도 조절이 가능한 웨어러블 제품이 있다(그림 6). 그러나 현재까지 대부분의 전기변색 제품들은 유리 기재 기반의 제품으로 개발되고 있으며, 필름형 제품은 연구 단계인 실정이다(그림 7). 현재 전기변색 기술을 응용한 제품 개발을 활발히 진행하고 있는 국외 기업으로는 미국의 Gentex 사가 있으며, 자동차용 미러 시장의 우위를 선점하고 있다. Sageglass 사를 중심으로 전기변색 스마트 윈도우 시장의 규모가 확장되고 있으며, 실제 대형 건물의 창호를 디자인함으로써 상용화에 도달한 수준의 기술임을 입증하였다. 국내 기업으로는 ‘립하이(LeapHigh)’가 있으며, 반도체 박막증착 기술 전문 기업으로써 기존 자동차용 미러 제품의 구조적인 한계를 극복하고 경쟁 기업인 미국 Gentex 사의 높은 가격대의 단점을 보완하여 Eyewear, Automotive, Architecture 용 전기변색 제품을 생산하고 있다.이처럼 전기변색 기술은 지속적으로 응용 분야를 개척해 나가며 최근 들어 에너지 위기, 새로운 디스플레이의 개발, 안전에 대한 사회적 수요에 의해 새롭게 조명을 받고 있다. 따라서 자동차 및 건축물 창호, 모바일 전자 소자용 전기변색 기술의 발전은 낙관적이라고 전망할 수 있다.3.2. IR 차단 필름 개발 동향3.2.1. 열 차단 필름열 차단 필름이란, 태양 빛 에너지 중 열원인 IR을 반사, 흡수 등을 이용하여 내부로 투과되는 에너지를 감소시켜 온도를 저감하는 기술이다. 현재 시장에서는 실내 온도상승을 줄이고 쾌적한 실내 온도로 낮추기 위해 중공 이산화바나듐을 이용하고 이 입자 표면에 표면개질제를 사용해 두꺼운 코팅층을 형성해 경제성 및 열과 적외선 차단 효율을 높인 기술을 적용하고 있다. 적용 분야에는 일반적으로, 농업용 비닐에 코팅되어 열 차단 기능성이 있는 비닐하우스 설계를 들 수 있다. 또한 유리가 존재하는 모든 건축물에 적용될 수 있다. 건축물에 적용될 경우 실내로 유입되는 가시광선을 최대로 허용해 하절기에는 실내로 유입되는 태양열을 감소시키고 동절기에는 실내의 열을 실내로 재 반사시켜 냉난방 효율을 증대시킬 수 있다.특히 이러한 기능은 지구 온난화에 의해 증가된 온도에 의한 피해를 줄이고 에너지의 절감을 통해 현재 전 세계적으로 행해지는 온실가스 감축 및 에너지 소비 합리화 정책과 맞물려 필요성이 대두되고 있다.현재 지구 온난화로 평균 기온의 상승과 태양광 장파장 투과량 증가로 인해 세계 곳곳에서 발생하는 농작 및 경작지의 사막화가 진행되고 있다. 이러한 사막화가 진행되는 경작지에는 온실가스를 줄이는 기술적 조치 등이 방법으로 제시되고 있다. 현재 우리나라에서는 에너지 소비 합리화를 위해 제로 에너지 빌딩을 목표로 에너지 소비량을 감소시키고 있다. 특히 공공기관의 건축물과 일정 층 이상의 건물에는 단열성능 등을 강화하여 passive 형태로서 냉, 난방에 사용되는 에너지를 줄이고자 한다. 이러한 방향에 필요한 기술로는 사막화가 진행되는 경작지에 제공될 수 있는 온도 저감이 가능한 농업용 필름과 제로 에너지 빌딩을 위한 passive 에너지 절감 필름의 기술 등을 제시할 수 있다(그림 8, 9). 두 가지 모두 공통으로 태양 빛에 의해 과도하게 증가하는 온도의 영향에서 벗어나고자 제시된 기술로서, 각각의 기술에는 목적에 따라 차단하는 태양광의 범위와 강도가 달라 이를 미세하게 조절해야 할 필요가 있다.이 중 농업용 필름은 작물의 광합성을 위한 가시광선은 투과하고 온도의 증가 원인인 NIR, MIR 및 FIR은 차단이 필요하다. 그러나 현재 기술로는 투명하게 가시광선만을 투과하고 NIR, MIR 및 FIR을 전부 차단하여 온도를 저감하는 기술은 전무하다. 이러한 이유로 대다수 작물의 생육 온도인 35℃를 넘겨 폐사하는 사례가 증가하고 있다. 따라서 이런 문제점을 극복하기 위해, 생육에 필요한 가시광선을 80% 이상 투과하고, 온도 절감을 위한 IR 차단율이 높고, 기존의 일반 농업용 필름과 비교하여 온도 절감과 에너지 절감률이 높은 투명한 필름 기술을 개발하는 것이 필요하다(그림 10).현재 이러한 기술을 적용하기 위한 국내 기술 수준 및 동향을 살펴보면, 염료 착색에 의한 필름 기술개발이 선행되어 판매되고 있으며, 평가 대상 기술 제품과 같은 열 차단 기능이 있는 물질을 필름 혹은 유리 위에 분무 형태나 도포하는 형식의 열 차단 제품을 제조하는 업체가 몇몇 존재하지만, 단열재를 포함한 단열 비닐을 제조하는 업체는 전무하다.• ㈜K&P nano유리 또는 필름 위에 ITO(Indium Tin Oxide), ATO(Sn, Sb가 첨가된 P형 반도체 구조의 물질), CTO(W, Sb, Sn, Cs가 첨가된 P형 반도체 구조의 물질) 화합물을 코팅하는 소재로 생활용품의 IR 차단용으로 생산한다.• ㈜미지나노텍ITO, ATO, CTO, 나노물질(Au, Ag, Pt, W 등), 나노 세라믹(TiO2, 음이온, 황토 등) 등의 입자를 생산, 판매한다. 열 차단 소재로 ITO, ATO, CTO powder 및 solution이 있으며, 유리 또는 필름 위에 화합물을 코팅하는 방법으로 제품을 생산한다. 이러한 기술들의 단점을 극복하기 위해 국내 대학 및 연구기관에서 다양한 연구들을 진행 중이다.• 한양대학교 김동립 교수 연구팀Silicone elastomer에 silica aerogel microparticles을 분산시켜 투명한 상태에서 온도 절감이 가능한 메타물질을 보고하였다.3.2.2. IR 스텔스 필름스텔스 기술이란, 탐지 센서인 레이더나 적외선 탐지 장비 등으로부터 생존을 보장하기 위해 신호의 크기를 차단 또는 축소하는 기술을 의미한다. 스텔스 기술을 적용하면, 적에게 노출되지 않고, 노출된 경우라도 탐지된 신호가 축소 또는 왜곡되어 적의 상황 판단을 어렵게 만들기 때문에 아군의 생존확률을 증대시킬 수 있다. 국내에서는 적외선 메타물질 흡수체를 응용하여 고성능 센서, 파장 선택적 열 방출기, 열화상 이미지 센서, 적외선 스텔스에 대한 연구를 수행하고 있다. 특히 연세대학교 조형희 교수팀과 한재원 교수팀이 적외선 메타물질 흡수체를 이용하여 적외선 대기흡수 창으로 열에너지를 방사하는 연구를 수행하였다. 한재원 교수팀은 이론적으로 적외선 스텔스 기술에 사용하기 위해 금속 절연체 금속 구조를 갖는 이중대역 메타물질 흡수체를 제안하였다. 해당 분야에서 공액 고분자 기반의 IR 차폐 소재가 적용된다면 가시광 영역에서 투명하고 인체 혹은 물체에서 발산하는 IR을 차폐하여 은폐 기술로 적용이 가능하다(그림 11). 타 소재와 대비하여, 근적외선 차단뿐 아니라 Mid-IR 영역까지 우수한 차폐 능력을 나타내고 우수한 가시광선 영역 투과율 확보가 가능하여 투명성을 요구하는 새로운 분야에 활용이 가능하다. 뿐만 아니라 친환경 수분산 용액공정과 간편한 습식공정으로 제조가 가능하며, 다양한 기재에 적용이 가능하다.• 연세대학교 한재원 교수팀레이저 광을 완전히 흡수하는 표면을 제작해 미사일을 유도하는 산란광 발생을 억제하는 메타물질을 제조하였다. 물체에서 방출되는 적외선 분광을 선택적으로 조절해 검출기에 탐지되는 신호도 대폭 줄일 수 있다.• 연세대학교 조형희 교수팀나노 디스크 모양의 금속-절연체-금속 구조를 가지는 적외선 메타물질 흡수체를 이용하여 적외선 대기 흡수창인 5∼8μm 대역에서 파장 선택적으로 흡수 및 방사하도록 설계 및 제작하였다.• 한국기계연구원 나노공정연구실적외선 메타물질 흡수체를 적용하여 고성능 분자 센서 및 적외선 열화상 카메라에 적용되는 비냉각 마이크로 볼로미터(Microbolometer)의 성능을 향상시킨 결과를 보고하였다.4. 시장 전망2019년 Fortune Business Insight 조사에 따르면, 세계 스마트 윈도우 시장 전체 규모는 2023년 기준 56억$에 달하는 것으로 보고되었으며, 이 중에서도 ECD와 PDLC가 차지하는 비율은 전체 50% 이상이다(그림 12, 13). 이처럼 스마트 윈도우 디스플레이에 대한 과학적, 기술적 관심이 증가함에 따라 적용 가능한 소재에 관한 연구의 중요성도 크게 확대되고 있는 실정이다.세계 농업용 필름 시장이 2016년 91.3억$에서 2021년 125.1억$로, 연평균 6.5%로 성장 중이다(그림 14). 현재 세계 시장 중 아시아 시장이 수요가 가장 높으며, 시장은 10조 원($7.8억) 이상으로 매년 약 7.18% 성장 중이다. 우리나라 시장은 농업용 필름이 2017년 7,300만$이며, 2022년에는 9,840만 달러에 이를 것으로 전망된다. 또한, 온실용 필름은 2017년 5,460만$에서 2022년에는 7,260만$에 이를 것으로 전망된다.세계 윈도우 필름 시장은 2018년 15.9억$ 규모로 이후 연평균 4.7%의 성장률 나타낸다. 2022년에는 19.1억$의 시장 규모를 형성할 것으로 전망되며, 윈도우 필름 시장은 녹색 건물과 제로 에너지 빌딩에서의 사용이 급증하면서 건설 부문의 소비가 증가할 것으로 예상된다(그림 15). 특히 국내 시장은 정부의 지속적인 저탄소 정책 추진으로 공공기관(학교 등) 중심으로 건축용 윈도우 필름 적용이 확대될 전망이다. 또한, 민간 분야에서도 에너지 절감을 위해 점진적으로 구매 규모가 늘어날 것으로 예상된다. 국내 윈도우 필름 시장은 2017년 기준 983억 원 규모로 연평균 35.0%의 성장률을 보이며, 2021년에는 3,265억 원의 시장 규모를 형성할 것으로 예상된다.5. 결론현재 시장에서 지배적으로 통용되는 핵심 소재들은 거의 대부분 독일, 일본 등의 해외 기업 제품으로 세계적인 경쟁력을 갖는 소재 원천 합성 기술을 확보하는 것이 중요하다. 기존 소재를 대체하기 위해서 새로운 소재에 대한 검증을 위해 신뢰성 평가와 여러 제품 분야의 적용 평가 기회가 마련이 되어야 하기 때문에 끊임없는 연구개발과 지속 가능한 투자와 노력이 필요하다.특히, 에너지 절감을 위한 투명 스마트 필름 기술 분야에서 가시광선 영역의 투과도 제어 기술과 동시에 자외선, 적외선 영역에서의 선택적인 투과/차단 특성 제어가 필수적으로 요구된다. 전기변색 스마트 필름의 경우, 저 전력으로 구동할 수 있으며, 최종적으로 유연한 필름 형태로 디바이스를 제조하여 Roll-to-Roll 대면적 공정 적용이 가능하다면 우수한 경쟁력을 확보할 수 있을 것으로 예상된다.최근 급변하는 환경 이슈에 대한 수요 기술 및 시장에 대응하기 위해서는 메가트렌드에 적합한 소재 원천 합성 기술을 확보해야 하며, 핵심 소재를 다양한 분야에 접목하여 새로운 패러다임을 제시할 수 있어야 한다. 선도적인 역할을 수행할 수 있도록 수요 기술에 대한 정확한 이해와 소재 합성 기술 이외의 디바이스 적용 시 가공 기술, 신뢰성, 경제성 등 다양한 분야에서 노력이 중요하다.
편집부 2022-07-26
기사제목
자료제공: 우진플라임 기술교육원 / 교수 한선근1. 성형기술의 중요성위 그림에서 보는 것처럼 사출성형 기술은 여러 가지 광범위한 지식과 기술이 모여 사출성형 기술이라는 하나의 기술이 완성되는 종합적인 기술의 집약체이다. 그리고 이와 같은 기술의 집약체를 통해 성형품이라는 결과물로 도출된다. 따라서 어느 한 과정에서 발생하는 문제점은 품질에 영향을 줄 수 있다. 따라서 모든 성형 기술자는 성형기술의 기본적인 부분을 이해하고 성형을 하여야 한다. 2. 성형조건의 5대 요소위 표의 요인은 상호에게 영향을 주어 모든 조건을 임의로 설정하는 것은 곤란하다.3. 사출 속도사출 속도는 수지의 유압 속도를 조정한다. 사출 속도 조정을 통해 성형품 표면의 불량 현상(젯팅, 플로우 마크, 웰드라인) 등을 해결할 수 있다.4. 사출 압력(Injection Pressure)스크류 선단의 수지에 작용하는 최대 압력을 말한다. 유압식의 경우 스크류 전체에 작용하는 유압의 힘(사출력)을 스크류 단면적에서 뺀 이론치로 표시된다. 스크류 직경을 바꾸는 것은 직접 사출 압력을 바꾸는 것이 되므로 스크류 직경을 가늘게 하여 사출 압력을 높게 하는 경우 사출 용량, 사출률, 가소성 능력의 감소를 고려해야 한다.5. 이론 사출량과 실 사출량사출성형을 하기 전 이론 사출량과 실 사출량을 알고 있으면 편리하다. 계량량을 예측할 수 있고 가상의 성형조건을 설정할 수 있다. 이론 사출량과 실 사출량 수식과 수지별 상수는 사출기 선정의 이론 사출 용량을 구하는 공식은 아래 표와 같이 구할 수 있다.1) 다단 사출이란?압력, 속도, 위치를 2단계 이상으로 조건을 설정하여 수지를 금형에 밀어 넣는 것을 뜻한다. 압력, 속도, 위치가 2단계 이상이면 다단 사출이라 할 수 있다.2) 위와 같이 조건을 나누어 설정하게 되면, 불량이 나타나는 구간을 나누어서 불량을 해결할 수 있다. 제품에서 문제점이 되는 Point가 몇 군데인지 파악하여 단계가 최소 2~최고 10단계까지도 설정할 수 있으며, 불량이 있는 구간을 나눈 후 구간의 속도와 압력을 조정하여 불량을 해결할 수 있다.(사출 단계 및 화면의 구성은 각 성형기의 모델과 제조사에 따라 다를 수 있음)3) 다단 사출 구간 설정 방법사출(충진)의 단계에서 제품의 두께, 형상, 수지의 종류에 따라 다르지만 95~98% 정도를 성형시킨다. 사출 구간에서 100% 성형하는 것은 바람직하지 않다. 이러면 경우에 따라 오버 패킹, 잔류응력 등으로 휨, 뒤틀림, 백화 등의 불량이 발생할 수 있다.① 1단 사출 : 게이트 전(캐비티 내 수지의 충진성을 위해 중고속으로 사출)계량을 완료하고 게이트 앞쪽까지 사출을 진행하는 것으로 속도와 압력은 50% 이상으로 설정을 하는 것이 좋다. 스프루와 런너에서 나올 수 있는 불량이 없기에 빠르고 조금 높은 압력을 사용하여도 무방하다.② 2단 사출 : 게이트 후(젯팅, 게이크 마크 방지를 위해 저속으로 사출)2차의 위치는 게이트를 지나서 조금 사출될 정도의 거리를 찾는다.2차 사출은 대부분 저속으로 사출을 하여야 되기 때문에 정밀도 높은 제품은 1차와 2차의 위치를 최소로 하는 것이 좋으며 일반적인 제품은 1차와 2차의 위치의 범위를 넓게 하는 것이 양산 시 재현성에 문제가 없다.③ 3단 사출 : 성형품 80~90%(웰드. 플로우 마크, 방지를 위해 중고속으로 사출)사출 단계는 제품을 80~90% 정도를 사출한다. 이는 규정된 것은 없으며 성형품의 모양, 불량 등 다양한 요인에 따라 변할 수 있으므로 제품의 형상과 불량을 잘 파악하고 사출을 진행하여야 한다.④ 4단 사출 : 성형품 95~98%(Gas 몰림으로 인한 탄화 방지를 위해 저속으로 사출)사출 단계를 4단으로 늘리고 성형품의 95~98% 정도 사출한다. 이때 사출되는 거리가 보압 절환점(V/P 절환점)이 된다. 성형품의 두께, 형상에 따라 4차에 사출되는 거리는 달라질 수 있으며 과패킹, 잔류응력 방지를 위해 사출로 100% 성형하지 않는 것이 중요하다.(미세하거나 매우 얇은 성형품 또는 사출기 압력이 부족한 경우는 100% 성형하기도 함) 이와 같은 방법으로 다단 사출을 진행하여 각각의 위치를 찾게 되면 불량이 나타나는 구간의 속도와 압력을 조정하여 불량을 해결할 수 있다.아래 그림은 사출(충진) 구간의 사출 속도를 위치별로 표시한 것이다.⑤ 보압 설정하기수지가 용융 상태에서 냉각되면서 수축이 발생하게 되는데 이 수축량을 보상하기 위해 압력이 필요한데 이걸 보압이라 한다.보압은 속도로 제어하는 구간(사출, 충진)에서 압력으로 제어하는 구간(보압)이다.보압도 3차까지 설정을 하는데, 1차 보압은 저압으로 설정 스킨층 형성(Burr에 대한 대책) 2차 보압은 1차 보압 보다 압력은 높게(수축, 치수 해결) 설정한다. 3차 보압은 2차 보압 보다 낮게 설정하여 게이트 Seal까지 압력 유지, 뒤틀림, 과패킹, 잔류응력 방지를 위해 저압으로 설정한다.
편집부 2022-06-12